Il rettangolo disegnato a fianco può essere descritto così:

5 ≤ x ≤ 15,   5 ≤ y ≤ 10

[ ""  significa  "è minore o uguale a" ]

Come possono essere descritti i due quadrati?

    

Quadrato a sinistra:   6 ≤ x ≤ 9,  6 ≤ y ≤ 9.

Quadrato a destra:   11 ≤ x ≤ 14,  6 ≤ y ≤ 9.

Invece il rettangolo senza i due quadrati potrei descriverlo così:

L'insieme dei punti  (x,y)  tali che   5 ≤ x ≤ 15,   5 ≤ y ≤ 10   meno
quelli tali che  6 ≤ x ≤ 9,  6 ≤ y ≤ 9  e quelli che  11 ≤ x ≤ 14,  6 ≤ y ≤ 9

La figura è stata realizzata con questo programmino  (che puoi trovare anche qui, col nome "lapis")  con i comandi:
11111 11111 22222 33333 33333 44444 0 ab 111 222 333 444 0 aaaaa 111222333444 0
ovvero copiandoli e incollandoli nel riquadro dello script lapisA (che trovi qui).


Nella scuola superiore si vedrà che il rettangolo può essere descritto in forma abbreviata con:

{ (x,y) / 5 ≤ x ≤ 15,   5 ≤ y ≤ 10 }

( l'insieme degli (x,y) tali che 5 ≤ x ≤ 15,   5 ≤ y ≤ 10 )

e che il rettangolo meno i due quadrati con:

{ (x,y) / 5≤x≤15,   5≤y≤10 } − { (x,y) / 6≤x≤9,   6≤y≤9 } − { (x,y) / 11≤x≤19,   6≤y≤9 }

dove il simbolo "−" può essere letto "meno". Dati due insiemi A e B, con A−B si indica l'insieme degli elementi di A che non sono elementi di B. L'operazione "−" viene chiamata "differenza" o "complemento relativo".