Siano F(x) = sin(1/x)·x2 e G(x) = x. Determinare F'(x) e G'(x) e studiare
il limite di
F'(x)/G'(x) = 2x sin(1/x)−cos(1/x) non ha limite per x che tende a 0 mentre
L'implicazione inversa della regola de L'Hopital non vale!

Per il teorema de L'Hopital vedi Proprietà delle funzioni continue e di quelle derivabili neGli Oggetti Matematici.