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1. Richiami
    Abbiamo visto nella scheda sul  concetto di limite  funzioni che, al tendere dell'input ad un numero particolare o all'infinito o a meno
infinito, tendono a stabilizzarsi su un certo valore o crescono o decrescono oltre ogni limite.  Abbiamo visto che vi sono funzioni che
tendono a questo comportamento più velocemente di altre.  Nella scheda sulle  funzioni esponenziale e logaritmo  abbiamo incontrato
due funzioni con andamento opposto, che al tendere dell'input agli estremi del dominio crescono molto velocemente o molto lentamente. 
In questa scheda metteremo a punto degli strumenti che ci consentiranno di precisare questi confronti, e che ci saranno particolarmente
utili, sia per determinare il limite delle varie funzioni, sia per molti altri aspetti, che approfondiremo in schede successive.  Uno di questi
è la possibilità di approssimare molte funzioni con opportuni polinomi; qui illustriamo questa possibilità solo nel caso di alcune funzioni,
attorno a particolari punti.

2. Confronto tra infiniti: esempi
(1)  Due cineclub, Ca e Cb, presentano le seguenti tariffe: il primo 10 € di tessera annuale più 3 € a spettacolo; il secondo 16 € di tessera
annuale più 3 € a spettacolo.  I film proiettati sono delle stesso livello, ma il secondo cineclub ha una sala più accogliente (poltrone più
comode, suono migliore, …).  Quanto mi verrebbe a costare in più il cineclub Cb?
    Studio in generale la situazione rappresentando il costo totale annuo con dei grafici.  Siano A(n) e B(n) i costi annuali per,
rispettivamente, Ca e Cb se vi vedo n film.  Ho (facendo variare nel grafico per semplicità n tra i numeri reali):

  A(n) = 3·n+10                               B(n) = 3·n+16

    Al crescere del numero di film visti, i costi totali tendono entrambi all'infinito, mantenendo una differenza costante di 6 €.  Ma la
distanza tra i due grafici tende ad essere trascurabile rispetto al valore delle ordinate:  se vedo molti spettacoli non c'è praticamente
differenza tra quanto spenderei complessivamente nei due cineclub.
    Il fatto che A(n) e B(n) tendono ad essere "praticamente" uguali possiamo esprimerlo dicendo che il rapporto tra essi, B(n)/A(n) tende
ad 1:  B(5)/A(5) = (3·5+16)/(3·5+10) = 31/25 = 1.24,  B(10)/A(10) = (3·10+16)/(3·10+10) = 46/40 = 1.15,  B(40)/A(40) =
(3·40+16)/(3·40+10) = 136/130 = 1.0461…
    Per descrivere quanto messo ora in luce si usa dire che, al crescere di n, A(n) e B(n) sono asintoticamente uguali (o equivalenti);  in
simboli:  A(n) ≈ B(n)  per n → ∞.
    Posso precisare questo modo di dire usando il concetto di limite per "definire"  F(x) e G(x)  (che tendano a ∞ per x → α) 
asintoticamente uguali per x → α  quando:

limx → α F(x) / G(x) = 1

    Nel nostro caso, per n → ∞:    
A(n)

 = 
3n+10

 = 
3+10/n

 → 
3+0

 = 1——— ——— ——— ——
B(n) 3n+16 3+16/n 3+0

Nota.  Nel caso del nostro esempio iniziale, ovviamente, nella realtà non ha senso far tendere a ∞ il numero n degli spettacoli visti in un
anno. Al massimo n potrà valere qualche centinaio, se il cineclub è aperto tutti i giorni.  Tuttavia è comodo astrarre dalla situazione e far
finta che ciò possa accadere:  pensando ai termini A(n) = 3n + 10  e  B(n) = 3n + 16  e al loro comportamento per n → ∞ è più facile
ragionare che facendo i calcoli caso per caso.  Abbiamo già osservato in molte altre occasioni il fatto che il passaggio al modello
matematico astratto (se fatto non a sproposito) serve non per complicarsi la vita ma per rendere più semplice l'esame della situazione.
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(2)  Se traccio il grafico di F: x → (sin(x) + x/2)² ottengo una rappresentazione come quella qui a destra:
una curva che oscilla con apparente andamento parabolico.
    Provo a confrontare, per x → ∞, F(x) con x²:

F(x)
  =  

(sin(x) + x/2)2
  =  ( 

sin(x) + x/2
 )

2
—— ————— —————

x2 x2 x

per  x → ∞    
sin(x) + x/2

 = 
sin(x)

 + 1/2   →  0 + 1/2 = 1/2————— ——
x x

[ per x→∞  sin(x)/x → 0 in quanto è compreso tra 1/x e −1/x entrambi i quali tendono a 0, e il passaggio al limite
conserva la relazione "≤" ]
    Dunque:  per  x → ∞   F(x)/x2 → (1/2)2 = 1/4, e quindi F(x) / (x2/4) → 1.
    Posso concludere che, per x → ∞,   F(x) ≈ x2/4.

(3)  I termini F(x) = 2+1/x, G(x) = x+1/x e H(x) = 1/x, che per x → ∞ hanno comportamenti molto
diversi, per x → 0+ e per x → 0- tendono tutti a ∞ e a –∞.  I fattori additivi  2  in F(x) e  x  in G(x), 
man mano che x si avvina a 0 e 1/x cresce,  diventano trascurabili rispetto al valore complessivo.  Si può
dedurre che sia F(x) che G(x) tendono a comportarsi come se avessero solo il fattore 1/x, ossia come
H(x).  I grafici, a destra, sembrano confermare ciò.  Provo a usare la  definizione, con 0 come α.

  

per  x → 0    
x + 1/x   =  

x2 + 1   →   02 + 1   = 1——— ——— ———
1/x 1 1

per  x → 0    
2 + 1/x

 = 
2x + 1

  →  0 + 1
 = 1——— ——— ———

1/x 1 1
Dunque:   per  x → 0,   x + 1/x  ≈  2 + 1/x  ≈  1/x.

(4)  La parola asintoticamente richiama il termine asintoto (vedi la scheda Le figure 2) e ricorda il fatto
che se  f1(x) ≈ f2(x) per x → α  allora i grafici di f1 e f2, per l'ascissa che tende ad α, tendono a
confondersi.  Nell'ultimo esempio i grafici di F, G ed H avevano effettivamente tutti l'asse y come
asintoto.
    Si noti, tuttavia, che non è detto che se due funzioni f1 e f2 hanno grafico con uno stesso asintoto si
abbia che f1(x) / f2(x) → 1.  Siano ad esempio H(x) = 1/x, K(x) = 1/x², L(x) = 3/x.  I loro grafici per
x → 0+ hanno l'asse y come asintoto ma il loro rapporto non tende a 1:
•  H(x)/K(x) = 1/x / (1/x²) = x   che non tende a 1, ma a 0;  in altre parole, 1/x² all'avvicinarsi di x a 0
cresce più velocemente di 1/x, per cui i due numeri assumono rapidamente ordini di grandezza molto
diversi, non tendono ad essere uguali (pur tendendo entrambi a ∞);
•  H(x)/L(x) → 3 ≠ 1,  ovvero  H(x)  ≈  3·L(x).   

 1     Quanto valgono  h  e  k  nei due casi seguenti?
   √(x8+x) + 7·x8  ≈  h·xk per x → 0     √(4·cos(x)+9·x6 )  ≈  h·xk per x → ∞
 

3. Ordini di infinito
    Sostituire un termine con un altro asintoticamente equivalente è molto spesso comodo per determinare limiti del tipo "∞/∞".  Infatti lo
studio del limite di F(x)/G(x) non cambia se  sostituisco il termine F(x) con H(x) tale che H(x)≈F(x)  o  sostituisco il termine G(x) con
H(x) tale che H(x)≈G(x).
Esempio:  lim x → ∞ (sin(x) + x/2)² / (3 + 2x²)
  Sia  (sin(x) + x/2)²  che  3 + 2x²  tendono a ∞, quindi siamo in un caso "∞/∞".
  Abbiamo visto  sopra che, per x→∞, (sin(x) + x/2)² ≈ x²/4.
  3 + 2x² ≈ 2x². Infatti (3+2x²)/(2x²) = 3/(2x²) + 2x²/(2x²) = 3/(2x²) + 1 → 0+1 = 1.
Quindi:
    lim x → ∞ (sin(x) + x/2)² / (3 + 2x²) = lim x → ∞ x²/4 / (2x²) = lim x → ∞ 1/4/2 = 1/8.

    È comodo ricorrere alla seguente notazione, nel caso in cui F(x) e G(x) tendano all'infinito per x → α.  Se  F(x) ≈ G(x)   (cioè se
F(x)/G(x) → 1)  si scrive anche, convenzionalmente,   F(x) = G(x) + …  per indicare la presenza di un termine che per  x→α  è
trascurabile rispetto a G(x):

per x → α F(x) è uguale a G(x) a meno di un termine trascurabile rispetto a G(x)
Facendo riferimento ad alcuni degli esempi visti sopra possiamo dunque scrivere:
   •  per x → ∞,  2x + 7 = 2x + …:  7 è trascurabile rispetto a 2x.
   •  per x → 0,  x + 1/x = 1/x + …:  x è trascurabile rispetto a 1/x.
   •  per x → ∞,  sin(x) + x2 = x2 + …:  sin(x) è trascurabile rispetto a x².
Calcoliamo velocemente  lim x → ∞ (x + 3 x²) / x².  Per x → ∞  x + 3 x² ≈ 3 x², ovvero  x + 3 x² = 3 x² + …  Quindi:
    lim x → ∞ (x + 3 x²) / x² = lim x → ∞ 3 x² / x² = 3.

    In generale,  per x → ∞  xh è trascurabile rispetto a xk  se 0 < h < k.  Vedi grafico seguente, a sinistra.
    Quando F(x) è un infinito trascurabile rispetto a G(x) si dice anche che F(x) è un infinito di ordine inferiore rispetto a G(x).  Quindi,
per x → ∞, x² è trascurabile rispetto a x³.
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 2   
  Completa:   lim x→∞(√x + x3 + x – 130) / (3x3 + 2) = …

in quanto per x→∞   √x + x3 + x – 130 ≈ …           e   3x3 + 2 ≈ …
 

    Quando, per x → α, F(x) e G(x) tendono all'infinito e F(x) ≈ k·G(x), ossia F(x)/G(x) → k (≠0), si dice che F(x) e G(x) sono due infiniti
dello stesso ordine.  Abbiamo appena visto che  √x + x³ + x – 130  e  3x³ + 2  per x → ∞ sono infiniti dello stesso ordine.

    I due grafici a destra, nella figura precedente, mostrano che, per x → ∞, ex è un infinito che cresce molto velocemente:  fino a circa
x = 1.86  exp(x) ha valore superiore a x³, poi ha valore inferiore fino a circa x = 4.53, quando definitivamente lo scavalca.  Cose analoghe
accadono nel confronto con xN per qualunque N maggiore di 3.

    Si può in effetti dimostrare che x → xα, qualunque sia α > 0, cresce più lentamente di exp.  In simboli, per ogni α > 0:

lim x → ∞ ex / xα = ∞

    Il grafico a destra mette in luce che cosa accade per log, la funzione inversa di exp, il cui grafico è
simmetrico al grafico di questa rispetto alla bisettrice del primo quadrante:
    x → xα, qualunque sia α > 0, cresce più velocemente di log.

lim x → ∞ log(x) / xα = 0

  
    Quanto visto per l'esponenziale e il logaritmo naturale può essere esteso, con opportune modifiche, a
tutte le funzioni esponenziali e logaritmiche.
    Sappiamo che  ax = elog(a)·x  e che  loga(x) = log(x) / log(a).  I grafici sono opportunamente scalati rispetto alle funzioni di base e  e,
se la base è minore di 1, sono ribaltati verticalmente od orizzontalmente.  Non è il caso di imparare cose a memoria: basta ricondursi, con
le formule precedenti, al caso di base e o di una base maggiore di 1 per studiare situazioni in cui sono coinvolte basi minori di 1.

Esempio:  lim x → ∞ (2x + x8 + 3) / (5x – 7x) = lim x → ∞ (2x + …) / (5x + …) = lim x → ∞ 2x / 5x = lim x → ∞ 1/(5/2)x = 1/∞ = 0

 3     Calcola  lim x → ∞ (x + log(x)) / (3x + 1)   [usa il fatto che, per x→∞, x+log(x) = x+… e 3x+1 = 3x+…]
 

4. Confronto tra infinitesimi: esempi
(1)  Considerazioni e definizioni analoghe al caso degli "infiniti" valgono per quello degli "infinitesimi", ossia quello in cui devo
confrontare F(x) e G(x) che per x → α (finito o infinito) tendono a 0.
    Di fronte a  lim x→0 (x2+3x) / (2x+5x4), che è del tipo "0/0", cerchiamo di capire come x2+3x e 2x+5x4 si possono approssimare
quando x è vicino a 0.  I grafici che seguono mettono in luce che, per x→0, x²+3x e 3x tendono a confondersi, ovvero in 0 hanno la
stessa pendenza, ovvero y=3x è la retta tangente a x²+3x per x=0.  La cosa del resto è facimente verificabile usando la derivazione (vedi):

D x=0 (x²+3x) = (2x+3) x=0 = 3, e la retta per (0,0) con pendenza 3 è y = 3x.

    Anche in questo caso posso osservare che per x → 0  (x²+3x)/(3x) = x/3+1 → 1  ed esprimere ciò dicendo che  x²+3x  equivale
asintoticamente a 3x:  x²+3x ≈ 3x.
    Analogamente per x → 0  (2x+5x4)/(2x) = 1+5/2·x3 → 1, ovvero  2x+5x4  equivale asintoticamente a 2x:  2x+5x4 ≈ 2x.
    Dunque  lim x→0 (x2+3x) / (2x+5x4) = lim x→0 3x / (2x) = lim x→0 3/2 = 3/2.

(2)  Sotto a sinistra sono tracciati vicino all'ascissa 0 il grafico di x → sin(x) e quello di x → x, che sappiamo (vedi) essere tangente al
precedente.
    Anche in questo caso  per x → 0  sin(x)/x → 1,  ossia  per x → 0  sin(x) ≈ x.
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(3)  Sopra a destra è tracciato parzialmente il grafico x → cos(x)−1, che sembra avere vicino all'ascissa 0 andamento parabolico.
Verifichiamo che il suo andamento è approssimabile con quello di x → −x²/2.
    Si può effettivamente dimostare che  per x → 0  (cos(x)−1) / −x² → 0.5, ovvero  (cos(x)−1) / −x²/2 → 1, ovvero  cos(x)−1 ≈ −x²/2.

5. Ordini di infinitesimo
    Così come abbiamo fatto per gli infiniti possiamo sintetizzare quanto visto negli esempi precedenti  (ossia che per x → 0  3x+x² ≈ 3x, 
sin(x) ≈ x,  cos(x)−1 ≈ −x²/2)  in questo modo:

(1)  3x+x² = 3x + …    (2)  sin(x) = x + …    (3)  cos(x)−1 = −x²/2 + …
espressioni che possiamo leggere come:  "3x+x² è uguale a 3x a meno di un infinitesimo trascurabile rispetto a x",  "sin(x) è uguale a x a
meno di un infinitesimo trascurabile rispetto a x",  "cos(x)− 1 è uguale a −x²/2 a meno di un infinitesimo trascurabile rispetto a x²".
    Osserviamo che un infinitesimo è trascurabile rispetto ad un altro quando è di ordine superiore (x³ è trascurabile rispetto a x²),  mentre
un infinito è trascurabile rispetto ad un altro quando è di ordine inferiore (x² è trascurabile rispetto a x³).

Esempio:  lim x → 0 (sin(x) + x/2) / (2x + x2) = (*)

Sia  sin(x) + x/2  che  2x+x2  tendono a 0, quindi sono in un caso "0/0".  So che, per x→0, sin(x) = x+…, da cui sin(x)+x/2 = 3x/2+… ≈
3x/2, e che, per x→0, 2x+x2 ≈ 2x.  Quindi:
(*) = lim x → 0 (sin(x) + x/2) / (2x + x2) = lim x → 0 3x/2 / (2x) = lim x → 0 3x/(4x) = 3/4.

 4   
  Calcola  lim x → ∞ (sin(1/x)+1/x2) / (1/x)  [traccia: è del tipo "0/0"; poni u=1/x e studia il limite per u → 0]
 

    Puoi studiare i limiti precedenti con gli script  TabFun1  (con gli input 1, 0.1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7)  e  TabFun2  (con gli
input 1, 10, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7).

 5   
  Determina  lim x → 1 (√x – x) / (x2−1)  (che è del tipo "0/0"), sperimentalmente, con lo script  TabFun3

    Potremmo usare anche la nostra  grande CT  (vedi);  ad es. lim x → 0 (sin(x) + x/2) / (2x + x2):

M = 1e-4           0.7499625010416145
M = 1e-8           0.7499999962500001
M = 1e-12          0.7499999999996251
M = 1e-16          0.75              

    A questo punto stabiliamo alcuni criteri per confrontare gli ordini di infinitesimo, analoghi a quelli messi a punto per gli infiniti. Sono
criteri altrettanto semplici, che è facile richiamare alla mente pensando ad alcuni esempi.
•   Per x → 0   xh è trascurabile rispetto a (xk)  se h > k > 0:  xα va a zero tanto più velocemente quanto maggiore è α.
    Analogamente per  x → q   (x−q)h è trascurabile rispetto a (x−q)k  se h > k > 0.  Ad esempio sotto a sinistra sono rappresentate 
F1: x → x−1.5,  F2: x → (x−1.5)²  e  F3: x → (x−1.5)³.  Evidentemente F3 è quella che per x → 1.5 tende a 0 più velocemente.

•   Per x → ∞  1/xh, posto u=1/x, si comporta come  uh per u → 0.  Quindi:
per x → ∞   1/xh è trascurabile rispetto a 1/xk  se h > k > 0 :  1/xα va a zero tanto più velocemente quanto maggiore è α.
    Nel grafico soprastante al centro sono rappresentate (in una scala diversa) le stesse funzioni  H(x) = 1/x, K(x) = 1/x², L(x) = 3/x 
considerate sopra studiando  gli infiniti. Là K aveva il grafico che (avvicinandosi l'input a 0 da destra) saliva più rapidamente, qui ha
quello che (al crescere dell'input) si avvicina all'asse x più rapidamente.
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•   Sopra a destra sono considerate le funzioni  E(x) = exp(−x), F(x) = 1/x³, G(x) = 1/x².  Come si vede meglio nell'ingrandimento, la
funzione esponenziale negativa, E, si avvicina più velocemente delle altre all'asse x, nonostante che per un certo tratto sia scavalcata
dalla funzione F.
    In generale, se a > 1, ax per x → –∞,  ovvero a−x per x → ∞,   è un infinitesimo di ordine superiore rispetto a 1/xα, comunque si
prenda α positivo.

 6   
  Determina  lim x → ∞ 5−x·x6  (motiva la risposta e controllala con TabFun4).
 

   

    Il fatto che il grafico di exp abbia in (0,1) come tangente y = x+1 ci assicura che per x → 0  ex ≈ x + 1  
ovvero  ex

 − 1 ≈ x.
    Per simmetria, y = x−1 è la tangente al grafico di log in (1,0) e, per x → 1,  log(x) ≈ x – 1   ovvero 
log(x) ≈ x − 1

Esempio:   lim x → 1 log(x) / (x2 – 1) = lim x → 1 (x–1+…) / ((x–1)(x+1)) = lim x → 1 (x–1) / ((x–1)(x+1)) =
lim x → 1 1 / (x+1) = 1/2.
    Possiamo controllare la risposta con TabFun5.

6. Specchietto riassuntivo
    Riassumiamo qui alcune relazioni particolarmente utili, e ne introduciamo alcune nuove.

x → ∞ 0 ← x x → ∞ x → ∞

x → ∞ x → ∞ −∞ ← x

In rosso  
gli infiniti  ↑  o

←  gli infinitesimi
trascurabili

(ossia gli infiniti di ordine inferiore,
gli infinitesimi di ord. superiore)

Per x → 0
sin(x) ≈ x   ovvero:
sin(x) ≈ x − x³/6   

cos(x) ≈ 1 − x²/2
  

  

Per x → 0
exp(x) ≈ 1 + x   ovvero:
exp(x) ≈ 1 + x + x²/2   

Per x → 1
log(x) ≈ x − 1   ovvero:
log(x) ≈ x−1 − (x−1)²/2

    Ricordiamo che, fatta un po' di pratica con la manipolazione matematica, puoi ricorrere a del software di uso pubblico per svolgere i
calcoli (analizzando comunque criticamente i risultati che ti vengono proposti e controllandone la sensatezza), 
www.WolframAlpha.com:  vedi.  Apri il software e copia nella finestra di input via via i seguenti "oggetti" e osserva, via via, la risposta
ottenuta:

lim e^x/x^a as x->oo, a>0 lim log(x)/x^a as x->oo, a>0 lim (sqrt(x)-x)/(x*x-1) as x -> 1
lim sqrt(n^2+n)-sqrt(n^2-2) as n -> oo lim n*log(n)/(n^4)^(1/3) as n -> oo

 

7. Esercizi
 e1      Siano F1: x → cos(x)·√x+x, F2: x → √(x²+x), F3: x → √x·(cos(x)+x).  Stabilisci, nel modo che ritieni più opportuno, quali tra

F1(x), F2(x) ed F3(x) si può dire che, per x → ∞, sono infiniti dello stesso ordine.
 e2      Sperimentare numericamente e congetturare il limite per n → ∞ delle

tre successioni a lato, e provare le congetture.
  √(n2+n) – √(n2–n)   √(n2+n) – √(n2–2)   √(n2+3) – √(n2–4)
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 e3      Determina il limite per x → 0 di:
      x/(cos(x)−1)      x²/(cos(x)−1)      x³/(cos(x)−1)

 e4      Stabilisci se z deve essere 0+ o 0−  perché si possa studiare l'esistenza di  lim x → z √(sin(x)−tan(x)).
Poni F(x) = √(sin(x)−tan(x)) o F(x) = √(tan(x)−sin(x)) in modo che il limite precedente sia eguale a  lim x → 0+ F(x).
Determina, quindi, tale limite e, posto G(x) = 1/F(x), dimostra che lim x → 0+ G(x) = ∞.
Congettura per quale α G(x) tende all'infinito per x → 0+ come 1/xα.

 e5      Confrontare per x → ∞ i seguenti infiniti:
      ³√(x+1/x)     arctan(x)·x²     √x·(1+x)

 e6      So che d ax/dx = log(a)·ax (vedi la scheda sulle funzioni esponenziale e logaritmo).
Quindi in x=0 la tangente a y=ax è y=log(a)·x+1 e per x → 0  ax ≈ log(a)·x+1.
Usa ciò per determinare  lim x → 0 (10x – ex) / sin(x)  (verifica la risposta con TabFun6, tenendo conto del valore di log(10),
calcolabile con la grande CT).

 e7      Stabilire se esistono (ed eventualmente calcolare) i limiti (per n → ∞) delle seguenti successioni:
n! / 2n    n! / (2n)!    2n

 / 3n    nn
 / n!    (√(n+1)–√(n–1))√n     n·log(n) / 

3√n4

 

1) Segna con l'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:
  asintoticamente uguali (§2),   o piccola (§3),   infinito di ordine inferiore (§3),   infiniti dello stesso ordine (§3),   equivalenza asintotica (§4),
  o piccola (§5),   infinitesimo di ordine superiore (§5).
2) Su un foglio da "quadernone", nella prima facciata, esemplifica l'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.
3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").
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