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1. Richiami

Nelle schede per la classe terza abbiamo gia incontrato piu volte la funzione esponenziale, ed abbiamo accennato alla sua funzione
inversa. Lo abbiamo fatto in modo molto veloce, in parti spesso "facoltative", parlando della derivazione di funzioni, degli integrali e del
teorema limite centrale. In questa scheda riprenderemo e approfondiremo lo studio di queste importantissime funzioni.

2. La crescita esponenziale

Suppongo che sia possibile organizzare 1'allevamento di una certa specie di animali in modo tale che ogni anno il numero dei capi
aumenti circa della meta, cioé venga moltiplicato per 1.5. Voglio studiare come aumenterebbe il numero dei capi al passare del tempo,
escludendo che vengano venduti o eliminati capi. Se indico con P(n) il numero per cui si ¢ moltiplicata la popolazione iniziale dopo n
anni, ossia se P(n) & la popolazione misurata prendendo come unita la popolazione iniziale, possiamo descrivere la situazione cosi:

P(0) =1, P(n+1) = P(n) - 1.5. Quindi:
P(1)=1-1.5=1.5, P2)=1.5-1.5=2.25, P(3)=2.25-1.5=3.375, .... Ad esempio dopo 20 anni la popolazione arriverebbe ad essere

piu di 3000 volte quella iniziale, come si puo verificare facendo i conti con una calcolatrice o con lo script ricorsione (per i calcoli con
la grande CT vedi):

a(n) if I know initial conditions and recurrence function F

3325.2567380@79651 if n=2@
7.59375 if n=5
5.8625 if n=4
p=1 3.375 if n=3
2
1
1

for (i=0; i<n; i++) {p=1.5%p} [2-25 if n=2
.5 if n=1

if n=86

Introduce n and click

AF—

25.62390625
38443359375
57.6650390625 [ |

P(n+1)=P(m)*1.5  P(0). P(L). ... P(10)

Si vede che all'aumentare di n P(n) cresce in maniera esplosiva. Si dice che P(n) ha una crescita esponenziale, in quanto, come ¢

script sequenze

1 O
15 O
225 (|
3375 — ,
5.0625 [ Posso poi rappresentare
I f?g.;;-} . graficamente questa
/] .
170850375 | | successione con lo
[
[

facile capire pensando alla definizione di potenza, P(n) puo essere espresso come: P(n) = 1.5" (ossia mediante il calcolo di una
potenza che ha l'input come esponente).

Poiché ad ogni anno la popolazione cresce di una quantita pari al 50% della popolazione dell'anno precedente, la velocita con cui la
popolazione varia annualmente ¢ proporzionale alla popolazione stessa.

Considera un allevamento nel quale il numero dei capi aumenti ogni anno del 30%. Se inizialmente i polli sono 1000, in 10 anni il
loro numero cresce in questo modo (come posso calcolare facilmente anche con la grande CT): 1000, 1300, 1690, 2197, 2856, 3713,
4827, 6275, 8157, 10604, 13786. Rappresenta graficamente questa sequenza. Si tratta di una crescita esponenziale?

E Supponiamo che un tessuto tumorale impieghi circa 15 giorni per aumentare del 100% la propria quantita di cellule e che cominci a
dare i primi sintomi clinici quando raggiunge i 500 milioni di cellule. Se al momento attuale il tessuto ¢ costituito da 1 milione di
cellule, quanto tempo trascorre, approssimativamente, prima che il tumore incominci a manifestare la sua presenza? [per rispondere
puoi usare sempliciEq risolvendo 1'equazione 2*x=500 ...]

Una situazione analoga ¢ quella della crescita di un deposito in una banca. Per evidenziare 'analogia con I'esempio precedente
supponiamo che la banca applichi un interesse del 50% annuo (nella realta le banche applicano tassi estremamente piu piccoli, per cui
non si osserva la crescita "esplosiva" che invece evidenzia il grafico seguente). Supponiamo che il deposito iniziale sia di 100 € e che
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non vengano nel frattempo fatti altri versamenti (e non vengano fatti prelevamenti). Se esprimiamo il tempo t in anni, il deposito in euro
D(t) dopo t anni ¢ descrivibile come:

D(0) = 100, D(t+1) = D(t) - (1 +50/100) = D(t) - 1.5 ovvero: D(t) =100 - 1.5¢

Mentre sopra aveva senso valutare la popolazione dell'allevamento solo di anno in anno (e rappresentarla con una specie
diistogramma), qui ha senso considerare anche tempi t non interi: una persona puo ritirare i soldi anche in momenti diversi dalla fine
dell'anno. Vedi il grafico sottostante a sinistra, che ha ora I'aspetto di una curva continua, realizzato con lo script banca. Nello script la
funzione ¢ rappresentata da y = 100*Math.pow(1.5,x),dove Math.pow (a,b) rappresenta a"b.

2000,— _ _ _ 1200
= /

22 A
/ 7
o": = = 700//

0 8 5 5.5 &

1000

Ma in realta il valore del deposito, per facilitare i calcoli, ¢ effettuato usando la formula D(t) = 100 - 1.5 solo per i valori interi. Ad
esempio per determinare il valore dopo un tempo tra 5 ¢ 6 anni (ad esempio dopo 5 anni e mezzo, ossia 5.5 anni) si calcolano i valori del
deposito dopo 5 e 6 anni con 100-1.5° e 100-1.5° e si calcolano quelli intermedi facendo variare il deposito proporzionalmente al tempo.

In altre parole, invece del grafico di t — 100 - 1.5' si considera quello che si ottiene da esso congiungendo i punti ad ascissa intera con
dei segmenti. Vedi il grafico soprastante a destra, realizzato con lo script banca2, in cui il pallino celeste rappresenta il valore del
deposito dopo 5.5 anni.

Questo ¢ dunque un caso in cui I'andamento ¢ "esponenziale" restringendo il dominio a input t interi, ed ¢ "lineare" in ciascun
intervallo tra un input intero e il successivo.

Il deposito in banca dopo 5 anni e mezzo, calcolato con la grande CT usando direttamente la formula, sarebbe 100-1.57 =
930.0406367129879 = (arrotondando ai centesimi) 930.04. Qual ¢, invece, il valore corretto?

3. Un altro esempio

L'esempio iniziale dell'allevamento era poco realistico, ma facile per introdurre I'argomento. Vi sono situazioni in cui le popolazioni
hanno effettivamente un andamento esponenziale. E il caso di vari tipi di microrganismi unicellulari che si riproducono per scissione:
quando la cellula raggiunge una certa dimensione si scinde in due. In particolari condizioni ambientali all'interno di una popolazione di
una di queste specie di microrganismi il tempo medio di vita di una cellula (ossia il tempo medio che passa dalla scissione di una cellula
a quello di una cellula da essa generata) ¢ pressocché costante. In alcuni microrganismi esso puo essere di pochi minuti, in altri puo
essere di qualche giorno.

In queste condizioni esiste un intervallo di tempo T (tempo di duplicazione) tale che, passando da un qualunque istante t all'istante
t+T, la popolazione raddoppi: infatti gli organismi non si scindono tutti esattamente nello stesso tempo, cosicché nel complesso di una
popolazione di svariati milioni di individui si ha un ininterrotto duplicarsi di cellule che da luogo a una crescita della popolazione
praticamente continua e regolare, con velocita di variazione proporzionale alla popolazione stessa.

Se iniziamo a misurare la popolazione a partire da un certo istante t=0 e indichiamo con P(t) il numero per cui si ¢ moltiplicata dopo il
tempo t, ossia se P(t) ¢ la popolazione misurata prendendo come unita la popolazione iniziale, possiamo descrivere la situazione cosi:

P(0) =1, P(t+T) = P(t)-2, o: P(t)=2" se n ¢& il numero delle duplicazioni avvenute nel tempo t.
Tenendo conto che n lo si ottiene dividendo t per il tempo di duplicazione T, abbiamo anche:

Pty=24/T.
25
In questo caso la formula ¢ praticamente applicabile per ogni t, per cui, se da un
rilevamento sperimentale ogni 5 minuti otteniamo i valori di P rappresentati graficamente qui —
a destra, ha senso cercare di approssimare tali punti con una curva, come ¢ fatto sullo stesso thd
grafico. p

Ricaviamo che la popolazione si moltiplica per 16 in 105 minuti; 16 = 24 quindi 4T = 105
minuti. Questi microrganismi duplicano la loro popolazione in 105/4 = 26.25 minuti, ossia in

26'15"
. i ———— 1]

0 -
0 min 120

o t . . .
Poiché 2 t/26-25 = (21 2625y ¢ 21726.25 = 1 0268, possiamo descrivere il fenomeno anche con la formula:

P(t)=1.0268 L.

Puoi vedere lo script micro che realizza I'immagine precedente. Nel prossimo paragrafo vedremo come calcolare la velocita di

variazione all'istante t di fenomeni descritti mediante funzioni del tipo t — a t.

EI Una popolazione di batteri raddoppia in un quarto d'ora. Posso scrivere P(t) = 2u15 per indicare, approssimativamente, il fattore per

cui viene moltiplicata la popolazione iniziale dopo t minuti. Infattiset=15 P(t) =2.
Se, come nell'esempio precedente, voglio esprimere P(t) come al, quale valore devo dare ad a?
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4. Le funzioni esponenziali e la loro derivazione

Nel §7 della scheda sulla derivazione di funzioni abbiamo visto come si definisce 2* per x irrazionale.
Per rinfrescare la memoria, vediamo come si calcola 2% quando z = 1.01001000100001... (che ¢ irrazionale in quanto non ¢ periodico):
27N <2772< 272
2 4
271.01 <27z2< 271.02
2.013911 2.027919
271.01001 <27z < 271.01002
2.013925060925787... 2.013939019042974...

Fermandomi qui posso concludere che 27 & arrotondabile con 2.0139. Proseguendo posso arrotondare il valore con quante cifre voglio
(2.01392506092578706...). Ricordiamo che in modo simile si posso definire le altre operazioni tra numeri reali.

Nella stessa scheda abbiamo richiamato il significato delle funzioni esponenziali, ossia del tipo F: x — a* con la base a positiva (se
no non potrebbero essere definite su tutto R) e diversa da 1 (se no si tratterebbe della funzione costante x — 1). Abbiamo visto (e rivisto
anche all'inizio del §2 della presente scheda) che esse esprimono fenomeni in cui una grandezza F(x) cambia con una velocita di
variazione proporzionale a F(x) stessa. Ci aspettiamo, quindi, che la derivata F'(x) sia del tipo k-F(x). Verifichiamo la cosa ricorrendo
alla definizione di derivata:

x+h X h 1

. - — h_ da*
llmh_,()a = limh_,oaxa' a1 X

N

=2a* limy_,g

Dungque ho proprio che D, (a*) = k-a* dove k ¢ la derivata in 0.

Tra tutte le funzioni esponenziali, ha una particolare importanza quella per cui tale k (cio¢ la derivata in 0) € 1, ossia che ha come
derivata sé stessa. Il valore della base per cui cio accade viene indicato con e, numero che viene chiamato numero di Nepero. La
animazione a cui si accede cliccando qui da un'idea di come si puo determinare e, e trovare che: e =2.71828182845904... (si tratta di
un numero irrazionale).

Dunque x — e* ¢ la funzione esponenziale il cui grafico nel punto (0,1) ha pendenza 1.

y = a* con a > e ha tangente in (0,1) con pendenza maggiore di 1; se 1 < a < e la pendenza ¢ positiva e minore di 1;se 0 <a<11la
pendenza ¢ negativa.

y =h* e y = (1/h)*, in quanto h™* = 1/(h*) = (1/h)*, hanno grafici tra loro simmetrici rispetto all'asse y.
5 5
' 5;=e--‘x [ | y¥1.§"x - A | y¥ 3.5“! // \\ V=-1!3.-5-“x.

3 -3 3 -3 3 -3 3

Dunque D,(e*) = e*. Questa particolare funzione esponenziale, usatissima in matematica e nelle sue
applicazioni, viene spesso scritta "a 1 piano" usando, come abbiamo gia visto, il simbolo exp, ossia scrivendo
exp(x) al posto di €".

Come abbiamo gia accennato, la funzione inversa di exp ¢ chiamata logaritmo ed ¢ indicata log. Il suo

| ——————— ografico ¢ simmetrico a quello di exp rispetto alla retta y=x.
y = log(x)
5 Sappiamo che Dy(a*) = k-a*. Quanto vale k?

) 4 Quandoa=e, k=1 e, in generale, come gia accennato, k = log(a). Giustifichiamo la cosa.

Evitiamo di fare un dimostrazione formale. Limitiamoci a verificare la cosa sperimentalmente. Potremmo usare la calcolatrice, ma
facciamo prima usando lo script Da”x. Facciamolo nel caso di y = 1.5”x, trovando la derivata in 0, ma potremmo farlo per qualsiasi
altra funzione esponenziale e per altri "x".

a|l.5 | =0 | |F(x)]

x1 |-1e7 |x2 17 | [(Fx2)F(x1)) | (21} |
Xl = -le-7, x2 = le-7 -> DE/Dx = 0.4054851037104233

x1 = -0.000001, x2 = 0.000001 -> DF/Dx = 0.4054851020932800483

x1 = -0.00001, x2 = 0.00001 -> DE/Dx = 0.4054851031109023

x1 = -0.0001, x2 = 0.0001 -» DE/Dx = 0.40546851082197047

x1 = -0.001, x2 = 0.001 -> DF/Dx = 0.4054851192150181

x1 = -0.01, x2 = 0.01 -» DF/Dx = 0.4054662190966724¢8

x1 = -0.1, ®x2 = 0.1 -> DF/Dx = 0.40557621600096294

x=10 -> Fix) =1

Potremmo usare anche la nostra grande CT (vedi):

( pow(l1.5,0+1le-4)-pow(1.5,0-1e-4) ) / (le-4*2)
( pow(l.5,0+1le-5)-pow(1.5,0-1e-5) ) / (le-5%*2)
( pow(l1.5,0+1le-6)-pow(1.5,0-1e-6) ) / (le-6*2)
( pow(l.5,0+1le-7)-pow(1.5,0-1e-7) ) / (le-7*2)

0.4054651082197047
0.4054651081109028
0.40546510809980063
0.4054651087104233
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Ad un certo punto diventano preponderanti gli errori di arrotondamento. Possiamo 5
prendere 'approssimazione 0.4054651081. Controlliamo: log(1.5) =
0.4054651081081644. OK. /

-

In altre parole il grafico di 1.5* ¢ il grafico di e* con la pendenza moltiplicata per y=ex y=15"

0.40546... A /

Se stringessi il grafico di 1.5 passando da 1 a 0.40546... otterrei quello di e*. _/
In defintiva, 1.5% = ¢0-40346...x ; F
In generale, a* = 18X = exp(log(a)-x). 3 303 3

Calcola la pendenza della tangente al grafico di x — a* per a = 3.5 nel punto (0,1), sia con lo script che con i calcoli, e controlla
sulla prima figura del paragrafo il risultato che ottieni. Fai lo stesso per a = 1/3.5 = 0.2857142857142857 (arrotondamento).

5. I logaritmi: un esempio
Quando dico che l'ordine di grandezza di 1000 € 3 o che quello di 96 mila ¢ 4, e quasi 5, intendo dire nel primo caso che si tratta di
103, nel secondo caso di un numero compreso tra 10%e 105, e molto vicino a 10,

11 concetto di ordine di grandezza facilita la descrizione sia dei valori molto grandi (milioni, miliardi, ...) che di quelli molto piccoli
(milionesimi, miliardesimi) e, come vedremo, la loro rappresentazione grafica. Consideriamo, ad esempio, il diagramma seguente ¢ la
sua didascalia.

dB [ I
20 soglia dell'udito )
di una perzona
. . - - - - \ \ con problemi
L'orecchio di una persona di udito buono rileva solo i suoni con frequenza compresa tra, circa, | gg b, dudito \
20 Hz e 20000 Hz: il timpano non ¢ in grado di vibrare a una frequenza che stia fuori da \ ',/
questo intervallo e, quindi, I'orecchio non puo trasformare un suono con una frequenza di M h / soglia delludita
questo tipo in impulsi nervosi da inviare al cervello. W Y ¥ [ di una persona
I grafici a lato riportano, per due categorie di persone, come al variare della frequenza (in Hz) \\ / ol "uitr buona”
dei suoni cambia il volume minimo (in dB, decibel: unita di misura per l'intensita, o volume, z0 \\ ,‘ 1
del suono) a cui si riesce a percepirli. J
I suoni meglio percepiti sono quelli attorno ai 3000 Hz. ) o
T [
- Hz
200 40 S0 200 400 GO0 2000 4000 goog
50 S0 100 300 500 1000 3000 5000 10000
an 00 13357 000 ¥e2EE. 10000
AR EEREY RRE AN EEERE NRNEE SRR N
e wf ng,s e st.s 1q"'
Per visualizzare meglio 'andamento ¢ stata scelta una scala orizzontale A N S
"sproporzionata", realizzata nel modo raffigurato a destra: 15 2 25 3 35 4

i valori delle frequenze sono stati segnati in corrispondenza dei loro ordini di grandezza rappresentati su una usuale scala proporzionata;
ad es. 100 sulla scala dei grafici corrisponde alla tacca 2 degli ordini di grandezza in quanto 102=100, 1000 corrisponde alla tacca 3 in
quanto 103=1000; 30 ¢ stato segnato in corrispondenza di 1.4771... in quanto 101477130,

Nel fare cio ho esteso il concetto di ordine di grandezza passando dalle potenze ad esponente intero a quelle ad esponente reale. Potrei
dire che l'ordine di grandezza di 30 ¢ 1.4771..., ma, come so, si preferisce dire che ¢ 1. Si dice, invece, che 1.4771... ¢ il logaritmo

decimale di 30; simbolicamente si scrive: 1.4771... = Log(30). In pratica il logaritmo decimale ¢ un'estensione del concetto di ordine di
grandezza.

In modo sintetico posso dire che la funzione Log ¢ la funzione inversa di x — 10*: h ¢ il logaritmo decimale di k se 10" =k. Siusa
Log riservando il simbolo log, come visto alla fine del paragrafo precedente, alla funzione inversa di exp. Invece di Log si usa anche
log ;-

La scala per le frequenze usata nel diagramma precedente viene chiamata scala logaritmica in quanto i valori sono rappresentati a
distanze proporzionali non ai valori stessi ma ai loro logaritmi decimali. Si tratta di una scala che si usa quando si vogliono rappresentare
assieme valori con ordini di grandezza molto diversi: in una usuale scala come avremmo potuto rappresentare assieme 30, 50, 80 e
5000? non saremmo stati in grado di differenziare i primi tre valori, che si sarebbero ammucchiati in uno stesso punto dell'asse.

Calcola, usando la grande CT, Log(30).

6. I logaritmi: la loro derivazione

Nei punti precedenti abbiamo introdotto due esempi di funzioni logaritmiche, ossia di funzioni inverse di funzioni esponenziali:
* la funzione log, inversa di x — €*, detta logaritmo naturale e indicata anche col simbolo In,
* la funzione Log, inversa di x — 10%, detta logaritmo decimale.

Pill in generale per ogni numero positivo a diverso da 1, si chiama logaritmo in base a ¢ si indica log,, la funzione inversa di x — a*.
In particolare abbiamo che Log = log; e che log = log,.

Ovviamente, avendo exp immagine positiva, il domino di log ¢ (0,).

Ecco i grafici delle funzioni logaritmiche che sono le inverse delle funzioni esponenziali rappresentate graficamente = nel §4. Come
si vede, i loro grafici sono simmetrici ai precedenti rispetto alla bisettrice del primo quadrante. I grafici delle esponenziali erano
ottemibili da quello di exp mediante dilatazioni orizzontali di fattore log(a), quelli delle logaritmiche sono ottemibili da quello di log
mediante dilatazioni verticali di fattore log(a).
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\ y=log (X)
135

/ y = log(x) y=log (x) / y=log (x)
1.5 35
-3

] 3
-2 4 -2 4 -2 4 -2 4
Qual ¢ la derivata di log in 1? E la pendenza alla tangente alla curva nel punto di ascissa 1. Questo & il simmetrico rispetto alla
bisettrice del 1° quadrante del punto di ordinata 1 del grafico di exp, che ha ascissa 0; qui la tangente a tale grafico ha pendenza 1.
Quindi Dy—; (logx)) = 1.

3

Qual ¢ la derivata di log in 2, ossia la pendenza alla tangente alla curva nel punto di ascissa 2. Questo ¢ il
simmetrico rispetto alla bisettrice del 1° quadrante del punto di ordinata 2 del grafico di exp, che ha ascissa
log(2); qui la tangente a tale grafico ha pendenza Dy_jyo(2) (exp(x)) = exp(log(2)) = 2. Dunque la derivata

= dilog in 2 ¢ il reciproco di questo numero: Dy—, (log(x)) =1/2.

y = log(x) In generale, mentre Dy(e*) = ¥, abbiamo che D, (log(x)) = 1/x.

3 Analogamente, mentre D, (a*) = log(a)-a*, possiamo trovare che D (log,(x)) = 1/(log(a)-x).
-2 4

Calcoliamo ad esempio Dy—q (log 1/3.5 (X)). Ho: 1/(log(1/3.5)-1) = -0.7982356...

Nota. La funzione x — x* non possiamo derivarla con le regole precedenti in quanto x compare sia nella base che nell'esponente.
Vedremo nel §9 come derivare questa funzione.

Risolvi le equazioni che seguono. A volte la soluzione si vede senza bisogno di manipolazioni strane: basta riflettere sul quello che
'equazione significa. A volte ti conviene usare la calcolatrice per cercare di avvicinarti il piu possibile alla soluzione. Altre volte si
vede che non c'¢ alcuna soluzione.

2X=16, log,(x)=3, 3*=-2, log,(81)=4, 5>=x, 4°=20, logs(31)=x,
X} =10, logs(x)=2, log,(5)=2, log,(-5)=2, log,(x)=2.5

Trova le equazioni delle rette tangenti a y = 0.5% nel punto di ascissa —2 ea y =log 5(x) nel punto di ascissa 3.

7. Altre proprieta delle funzioni esponenziali e logaritmiche
Ricordando i grafici delle funzioni esponenziali e logaritmiche visti in §4 e in §6 si ha facilmente che, se a > 1:
limy _, ,log,(x) =0 limy _, g1 log,(x)=—0 e
lim, _, ,a¥=o limy_,_,a*=0
Ese0<a<l1:
limy _, ,, log,(x) =—o limy _, ¢4 log,(x) =

: X — 2 X —
limy , ,a"=0 limy , ,a"=o0

Dalle proprieta delle potenze discendono particolari proprieta dei logaritmi. In particolare:

* dal fatto che ab™® = ab~a°, ossia che x — a* trasforma la somma di due input nel prodotto degli output, segue che la funzione inversa
trasforma, inversamente, il prodotto degli input nella somma degli output:

log,(p - q) = log,(p) +log,(q)

Ad esempio il ragionamento con cui si trasforma 1000-100 ¢ in 10213 puo essere interpretato cosi: "a che cosa devo elevare 10 per
ottenere 1000-100? alla somma degli esponenti a cui lo elevo per ottenere 1000 e 100", ossia: Log(1000-100) = Log(1000)+Log(100).

e dal fatto che a™® = l/ab, ossia che x — a* trasforma 'opposto di un input nel reciproco dell'output, segue che la funzione inversa
trasforma, inversamente, il reciproco di un input nell'opposto dell'output:

log,(1/q) = —log,(q)

Ad esempio: "a che cosa devo elevare 10 per ottenere 1/1000? all'opposto del numero a cui lo elevo per ottenere 1000", ossia:
Log(1/1000) = —Log(1000) = -3.

e dal fatto che a® = a%/a®, ossia che x — a* trasforma la differenza di due input nel rapporto degli output, segue che la funzione inversa
trasforma, inversamente, il rapporto degli input nella differenza degli output:

log,(p / @) = log,(p) — log,(q)
® Che cosa posso dire di loga(p3)?

Usando la prima formula riportata in questo punto abbiamo: loga(p3 ) =log,(p-p-p) = log,(p) + log,(p)+log,(p) =3 - log,(p). In generale
si ha:



log,(p9) = q - log,(p)
anche se q non ¢ intero; questa formula corrisponde alla proprieta delle potenze abc= (ab)c.

Nota. A volte siusa logx al posto di log(x). Per questa "notazione abbreviata" valgono considerazioni critiche e attenzioni da prestare
simili a quelle per le analoghe notazioni usate con sin, cos, tan. Ad esempio log 3 +5 € chiaramente equivalente a log(3)+5, ma log(3x)?,
che dovrebbe essere interpretato come log(3x)-log(3x), rispettando le regole base per l'interpretazione delle espressioni matematiche
(analogamente a k?, che viene interpretato come k-k), da alcuni, stranamente, viene interpretato come log((3x)?). Tutto il software
interpreta, invece, correttamente log(3*x)"2 come fosse log(3*x)*log(3*x), mentre per log((3x)?) occorre battere log((3*x)"2).

Nota storica. 11 termine "logaritmo" fu introdotto da Nepero (John Napier, 1550-1617, lo stesso a cui ¢ stato dedicato il numero e). 11
nome deriva dalle parole greche "arithmos" ("numero") e "logos", che, tra i vari significati, aveva anche quelli di "rapporto" (e "ragione",
come il latino "ratio") e di "calcolo". Probabilmente ¢ stato usato questo nome in quanto i logaritmi consentono di trasformare i
"rapporti" in differenze, sulla base della proprieta log(p/q) = log(p)-log(q), facilitando notevolmente i calcoli, in un'epoca in cui non
esistevano le calcolatrici.

8. L'integrazione delle funzioni esponenziali e reciproco
Abbiamo visto che integrazione e derivazione sono legate dalla proprieta:
Sia f continua in [a, b]; se G'=f allora j[a’ pf = G(b) — G(a)
nota come formula fondamentale del calcolo integrale.
Dato che D(exp) = exp posso concludere che un'antiderivata della funzione esponenziale ¢ la funzione
esponenziale stessa.

Quanto vale l'area tra il grafico di exp e I'asse x compresa tralerettey=—1ey=1?

Per una stima posso approssimarla con l'integrale tra —1 ed 1 di x — x+1, che vale 2:2/2 =2 (I'area del
triangolo raffigurato, delimitato superiormente dalla retta y = x+1).

Con precisione, posso calcolare: I[—l, 17exp = exp(l)—exp(—1) = 2.350402.

D, (log(x)) = 1/x. Quindi log ¢ un'antiderivata di x — 1/x per x positivo.

Quanto vale l'area tra il grafico di x — 1/x e I'asse x compresa tra le rette y = 1/2 e y = 3?
Per una stima posso considerare che ¢ circa 7 quadretti di lato 1/2, ossia circa 7-1/4 = 1.75.
Con precisione, posso calcolare: I[1/2,3] 1/x dx = log(3)—log(1/2) = 1.791759.

Notiamo che se x <0 Dy(log(—x)) = 1/x. La cosa pud essere dedotta dal grafico seguente, ma puo essere

...... .,‘

Calcola J‘[_]()’O]exp [ J.[_27_1]1/XdX. §v=logt—x}

dimostrata anche nel modo spiegato nel prossimo paragrafo.

Posso riassumere tutto con Dy(log(|x|)) =1/x e visualizzarlo con lo script Dlog.
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Nota. Se esite | [ax] F per ogni X in un intervallo [a, b], la funzione x — [ [ax] F viene spesso chiamata un integrale indefinito di F:
essa esprime l'area orientata tra grafico di F ed asse orizzontale compresa tra le rette verticali di ascissa a e di ascissa Xx.
Per il teorema fondamentale dell'analisi un'integrale indefinito di F non ¢ altro che una antiderivata di F.

Invece del termine antiderivata (che noi privilegeremo), oltre a "integrale indefinito", si usa anche primitiva (la primitiva di F ¢ una
funzione che viene "prima" dell'applicazione della derivazione). In qualche libro vi capitera di incontrare questi termini (integrale
indefinito, primitiva) invece di "antiderivata".

9. Alcune tecniche di derivazione

Accenniamo a due metodi molto comodi per calcolare le derivate di funzioni (che si affiancano a quelli gia visti), su cui ritorneremo
nel prossimo anno.

(A) Consideriamo il primo, comodo per calcolare le derivate di funzioni composte, rivedendo come calcolare d(log(—x))/dx. Penso a
log(—x) come composizione del "cambio segno" e del "logaritmo": x — —x =u — log(u).
d(log(-x))/dx = d(log(-x))/d(-x)*d(-x) /dx;
d(log(-x))/d(-x) = 1/(-x) inquanto d(log(u))/du = 1/u;
inoltre d(-x)/dx = -1; quindi
d(log(-x))/dx = 1/(-x)*(-1) = 1/x.
Questo metodo in inglese viene chiamato chain rule, ossia "regola della catena", in quanto la derivata di una funzione viene spezzata
in una catena di derivate, usando la "semplificazione" 1/dt-dt = 1.

Altro esempio, pitl complesso: d(cos(sin(x?))/dx, pensando a x — x*=u — sin(u) = v — cos(v).
d(cos(sin(x2)))/dx = d(cos(sin(x2)))/d(sin(x2)) *d(sin(x?2?))/d(x2?) *d(x?)/dx;
d(cos(v))/dv = -sin(v) [v = sin(x2)];
d(sin(u))/du cos (u) [u
d(x?)/dx = 2x; quindi
d(cos(sin(x2)))/dx = -sin(sin(x2?)) * cos(x2?) * 2x = -2x-cos(x?) ‘sin(sin(x2)).

x%1;
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Posso verificare il calcolo in rete con http:/www.WolframAlpha.com digitando d(cos (sin(x*2))) /dx.

(B) Consideriamo il secondo metodo, comodo per calcolare la derivata del prodotto di funzioni. Vediamolo direttamente con
WolframAlpha. Se digito d (£ (x)*g(x))/dx ottengo la somma dei prodotti di una funzione per la derivata dell'altra:
d
Ec[ﬂx) glx) = f'(x) glx) + flx) g"(x)
ovvero: D(f-g) = D(f)-g + f-D(g)
Vediamo l'uso su d(x4-x2)/dx, che sapremmo calcolare direttamente:
d(x*x2)/dx = d x%dx = 6-x°.
d(x? x%)/dx = 4-x3x% + x*-2-x = 4x®+2x% = 6x5. Ritroviamo il valore ottenuto sopra.

Altro esempio:
d(log(x) 'x)/dx = 1/x'x + log(x) ‘1 = l+log(x) ..

Calcola (A) Dy(exp(x®)) e (B) Dy(exp(x)-log(x))

Abbiamo anche che d(x*)/dx = x*(log(x) + 1). Vedi qui come effettuare tale calcolo.

Qui puoi trovare una tabella che riassume come calcolare derivate ed antiderivate delle funzioni pin usate.

10. Equazioni e disequazioni con esponenziali e logaritmi

La risoluzione di equazioni e disequazioni che coinvolgono funzioni esponenziali e logaritmiche non comporta problemi nuovi
(rispetto a quelli considerati nella scheda 2 sulle funzioni ed equazioni), se non quelli legati alle caratteristiche di queste funzioni.
Facciamo qualche esempio:

2
® Risolvere rispettoax 3% ~ X=1/3

2
logz (3% ~ Xy =Jog 3(1/3) ho applicato la funzione inversa di x — 3*

x2-2x=-1 ho tenuto conto che 1/3 = 3!
x2-2x+1=0

(x-1%2=0

x=1 [verifica: 312 =31 = 1/3: OK]

® Risolvere rispetto ax log s Vx =2

\x =132 ho applicato la funzione inversa di x — log;(x)

X = (32)2 ho applicato la funzione inversa di x — \x

x=92=381 [verifica: logzV81 = log39 = 2: OK]

® Risolvere rispettoax log,5=3

x=5 log,b=c quando a®=b
x =513 ho applicato la funzione inversa di x — X
x =35 =1.70997. [verifica: log 513 5=3: 0K]

® Risolvere rispetto a x  log(2x-5) > log(7-2x)
La disequazione ¢ definita quando 2x-5>0 & 7-2x>0, ossia x>5/2 & x<7/2

2x-5>7-2x ho applicato x — €*, che & crescente

x>3 ho aggiunto ai due membri 2x, poi 5 e poi ho diviso per 4
3<x<7/2 ho tenuto conto del dominio e del fatto che 3 > 5/2

® Risolvere rispetto a x log(x2 —2)<log(x)

La disequazione ¢ definita quando x2>2 & x>0, ossia x>\2

x2-2<x ho applicato x — €*, che ¢ crescente
x2—x-2<0

(x—1/2>-1/4-2<0 ho "completato il quadrato"
(x—1/2)2<9/4

-3/2+172 <x<3/2+1/2

V2<x<2 ho tenuto conto del dominio

[invece di completare il quadrato potevo osservare subito che x? - x — 2 si azzera per x=2, fare la divisione per x-2, ottenere x+1, dedurre la
scomposizione (x-2)(x+1); oppure potevo usare la formula per esprimere le eventuali soluzioni di una equazione polinomiale di 2° grado: x =
1/2 + V(1+8)/2 = 1/2 + 3/2; in entrambi i casi deducevo che y = x>-x—2 ¢ una parabola con la concavita verso l'alto che sta sotto l'asse x tra -1 e 2]

L . 2 2 2
Risolvi rispetto a x l'equazione 8% = 2%°, dove 2% sta per 2(*).

2
Quindi risolvi la disequazione 8% "1 > 2%,
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11. Approfondimenti

x — log(e*) e x — elog®), pur essendo il logaritmo la funzione inversa dell'esponenziale, non sono la stessa funzione:

® la prima ¢ definita per ogni input (equivale alla funzione identita x — x), mentre la seconda ¢ definita solo per input positivi (equivale
alla funzione identita ristretta agli input positivi), in quanto log(x) ¢ definito solo per x numero reale positivo;

® la prima ha per grafico la retta bisettrice del I e III quadrante, la seconda ha per grafico la semiretta bisettrice del I.
Ecco due link ad altri approfondimenti sui temi affrontati in questa scheda:
® |e catene di Sant'Antonio,

* note storiche e tecniche.

12. WolframAlpha

Adesso che hai fatto un po' di pratica con la manipolazione matematica, puoi ricorrere a del software di uso pubblico per risolvere
molti problemi (analizzando comunque criticamente i risultati che ti vengono proposti e controllandone la sensatezza),
www.WolframAlpha.com: vedi. Apri il software e copia nella finestra di input via via i seguenti "oggetti" e osserva, via via, la risposta
ottenuta:

denx/dx Log(30) log(a™b) solve log(2*x-5) > log(7-2*x) for x real
denx/dx d log10(x)/dx d log(x) / dx solve log(x"2-2) <= log(x) for x real
da”x/dx log(a*b) d f(x)*g(x) / dx solve 3°\(x"2-2*x) = 1/3 for x real

13. Esercizi

A lato ¢ tracciato parte del grafico di F. Quale, tra le seguenti, ¢ la definizione di F? Perché?
(A) F(x) =31 (B) F(x)=3%+1
(C) F(x)=3*"1 (D) F(x)=3*1
(E) F(x)=3"% (F) F(x)=3X

Quanto vale log1/2(1/8)‘? Quanto log , (1/8)?

La figura a lato, tratta da una rivista scientifica, rappresenta graficamente come le specie si
— distribuiscono per classi dimensionali (questa rappresentazione mette in luce, ad es., come vi
siano poche specie di animali "grandi" e molte di animali "piccoli").
Quanto vale, approssimativamente, il rapporto tra il numero delle specie di dimensioni "0.05-
0.1 metri" e quello delle specie di dimensioni "0.5-1 metri", cioé per ogni specie di dimensione
tra 0.5 e 1 metro quante ve ne sono di dimensione tra 5 e 10 centimetri?
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A lato sono tracciati alcuni grafici di funzioni in una scala in cui le "x" sono
rappresentate usualmente e le "y" sono rappresentate logaritmicamente. Associa ad

ogni grafico la relativa funzione, scelta tra y = 1.5%, y=2% y=3% y=4%
y=5% y=10%

i A lato sono tracciati i grafici di tre funzioni x — log(A-x+B).
: Scegli, per F, G ed H, valori di A e B scelti tra i seguenti: 0, 2, -2, 1, —1.

4 Risolvi rispetto a x I'equazione log , (log, x) =3.
Sia F(x) = x*. Quanto vale F(=2/3)?. Quanto vale F(—3/2)? Qual ¢ l'intervallo di ampiezza massima in cui F ¢ definita? E quello
in cui ¢ derivabile? Traccia, ivi, con l'ausilio del computer, il grafico di F.

Quanto valgono i limiti per x = oo di (1 + 1/x)* edi (1 + l/x)\/X ? (usa il "trucco" impiegato per calcolare d(x”x)/dx)
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Calcola le derivate rispetto ad x di log(log(x)) e di x-e*.
Calcola l'area della figura compresa tray = e, y = 0, x = 0, x = k (k>0).
Quindi calcola l'area della figura illimitata compresa tray = € * € y = 0 che sta nel semipiano x > 0.
Calcola I'area della figura compresa tra il grafico della funzione x — 3/(2-x), l'asse x e lerette y =—5ed y =—1.
el2| Calcola d(x-log(x)—x)/dx e deducine qual ¢ I'antiderivata di log(x).

e13| Risolvi rispetto a x la disequazione log(7—2x) < log(2x—5).
So che d(1/x)/dx = d(x Ydx = —1/x2, 1/(f(x)) = f(x)"! = g(f(x)) con g: q — 1/q. Quindi, usando quanto Vvisto in §9,
d(1/f(x) )/dx = d(1/f(x)) / d(f(x)) - d(f(x)) /dx = ...
e15| Usando quanto visto nell'esercizio precedente e in §9 ho che d(f(x)/g(x))/dx =d({(x)-(1/g(x)))/dx = ...
Un gatto riesce a percepire suoni con la frequenza che va da circa 50 a circa 8-10% cicli al secondo. E piti o meno ampio

l'intervallo delle frequenze dei suoni che riesce a percepire un uomo sano? Affronta problemi simili per I'udito dei cani, dei topi e
dei cavalli, cercando le informazioni su siti affidabili.

1) Segna con l'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:

crescita esponenziale (§2), tempo di duplicazione (§3), funzioni esponenziali (§4), numero di Nepero (§4), logaritmo decimale (§5), scala
logaritmica (§5), logaritmo naturale (§6), derivazione di esponenziali e logaritmi (§6), cambio base di esponenziali e logaritmi (§6), proprieta
varie di esponenziali e logaritmi (§7), antiderivata della funzione esponenziale (§8), antiderivata della funzione reciproco (§9).

2) Su un foglio da "quadernone", nella prima facciata, esemplifica 1'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.

3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").

ALTRO
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