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0. I Premessa

Abbiamo visto come, data una funzione, se ne puo studiare la variazione utilizzando le sue derivate prima, seconda, .... In questa
scheda vedremo, viceversa, che da informazioni su come varia una funzione si possono dedurre informazioni sulla funzione stessa. Il
primo paragrafo illustra in breve il contenuto della scheda e, in gran parte delle scuole, ¢ sufficiente per avere un'idea di che cosa siano, a
che cosa servano e come si studino i "modelli differenziali". I paragrafi successivi sono di approfondimento, per alcuni tipi di scuole.

1. I primi modelli differenziali

Suppongo di sapere che un corpo A si muove alla velocita costante di 8 m/s. Indico con t il tempo espresso in secondi dall'istante
(t=0) in cui l'oggetto ¢ partito. Sto ipotizzando, per semplicita, che un corpo possa partire immediatamente a tale velocita; in realta
sappiamo che la potra raggiungere solo dopo qualche istante. Indico con x la strada in metri percorsa dall'oggetto dopo t secondi. La

sua velocita sara la derivata dx,/dt, che posso indicare anche aggiungendo un apice ad x, come ¢ fatto nel grafico sottostante.

So che dx,/dt = 8. Posso dedurre che x5 = 8-t, come appare anche sul grafico. Ma questa soluzione
corrisponde al fatto che x4 (0) = 0, mentre non avevo alcuna informazione sulla posizione di partenza del o
corpo.

Potrebbe essere anche che x(0) = 10 (vedi il punto cerchiato) o x,(0) = 20, a cui corrisponderebbero
le equazioni x5 = 8-t+10 0 x5 = 8-t+20. Sul grafico, oltre a queste, ¢ rappresentata la soluzione
x = 8:t—10. Sono tutte rette parallele. Le parti a sinistra dell'asse y corrispondono al movimento del
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corpo nel caso in cui fosse partito prima dell'istante t=0.
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Suppongo, ora, di sapere che un corpo B si muove alla velocita crescente di (3-t+1.5) m/s, dove t ¢ il tempo espresso in secondi
dall'istante in cui I'oggetto ¢ partito. Indico con xy la strada in metri percorsa dall'oggetto dopo t secondi. Il grafico di come varia la

velocita ¢ rappresentato a sinistra:
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Dunque dxg/dt =3-t+1.5. Posso dedurre che xg = 3/2-t*+1.5t. Ma, anche in questo caso, & una soluzione (rappresentata sopra a
destra) che corrisponde al fatto che xg(0) = 0, mentre non avevamo alcuna informazione sulla posizione di partenza del corpo. Potrebbe
essere anche che, ad esempio, xg(0) = 10, xg(0) = 20 o xg(0) = —10 (vedi il punto cerchiato), a cui corrispondono le altre curve

rappresentate sul grafico (xg = 1.5-t*+1.5t+c con ¢ pari a 10, 20 o — 10).

Se astraggo dal contesto, posso tradurre alcuni dei problemi visti sopra in questi modi:
(1) Soche f'(x) =8. (a) Che cosa posso dedurre su f? (b) E se, ad es., so che f(0) = 10?

(a) Che f¢ del tipo f(x) =8'x + ¢c. (b) 8:0+c =10, quindi c=10 ¢ f(x)=8-x+10.

(2) So che f'(x) =3x+3/2. (a) Che cosa posso dedurre su f? (b) E se, ad es., so che f(0) =—-10?

(a) Che f ¢ del tipo f(x) = 3/2-x2>+3/2x+c. (b) 3/2:0+3/2-0+c = —10, quindi c=—10 e f(x) = 3/2-x2+3/2x—10.

Consideriamo un'altra situazione. Un'automobile C all'istante t ¢ nella posizione x(t), dove t ¢ espresso in secondi. Indichiamo questa
posizione, espressa in metri, pitt semplicemente con s(t) (dove s sta per "strada" o "spazio"). Supponiamo che 1'auto sia in accelerazione
costante, e che questa sia s"(t) = 5, in m/s2. Ovviamente questo accadra in un breve intervallo di tempo: 'automobile ha una velocita
limite oltre cui non puo andare. Che cosa posso concludere sul valore di s(t)?

Conoscendo 1'accelerazione posso dedurre qualche informazione sulla velocita: s'(t) potrebbe essere 5.t o 5-t+5 o 5:t=3 o, in
generale, 5-t+h.

Se s'(t) = 5-t potrei dedurre (come fatto sopra per xg) che s(t) = 2.5-t*+k.

In generale, se s'(t) = 5-t+h posso dedurre che s(t) = 2.5-*+ht+k



Da che cosa dipendono i valori di h e di k? Pensiamo, prima, al problema. Conosco l'accelerazione dell'auto. La sua posizione al
variare del tempo da che cosa dipende? Sicuramente dalla posizione iniziale, cio¢ s(0). E dalla velocita iniziale, cio¢ s'(0). Dipende,
quindi, da due valori. Vediamo la cosa dal punto di vista matematico.

Astraendo dal contesto posso descrivere il problema cosi:
(3) Soche f"(x) =5. (a) Cosa posso dedurre su f'? (b)esuf? (c)E se, ad es., so che £'(0) =1 ¢ che (0)
La figura seguente (in cui sono impiegate s e t invece di f ed x) illustra la soluzione:
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Da s"(t) =5 posso ricavare che s'(t)=5-t+h. Vedi la figura soprastante a sinistra.

Deduco che s' in funzione di t ha il grafico di una retta con pendenza 5. Vedi la figura al centro. So che s'(0)=1; posso quindi
individuare una particolare espressione di s': da s'(0) =5-0+h=1 ricavo che h=1. Nella figura la s' soluzione ¢ in colore blu.

Da s'(t) =5-t+h ricavo s(t) =2.5-t*+h-t+k. Sopra a destra sono rappresentate diverse di queste curve. Ne sono evidenziate, in blu,
due che corrispondono a s'(0)=1, ossiaa h=1. Se so che s(0)=2 ne indivuo una sola: da s(t) = 2.5-t*+t+k ottengo 2.5:0*+0+k =2, da
cui k=2; lasoluzione & s(t)=2.5-2+t+2.

Equazioni come f'(x) =8, f'(x) = 3x+3/2 ¢ f""(x) =5, in cui l'incognita ¢ una funzione (f) che compare sotto un simbolo di derivazione
(derivata prima o seconda o ...) vengono chiamate equazioni differenziali (ricordiamo che la derivata viene chiamata anche coefficiente
differenziale). Come abbiamo visto una equazione differenziale ha infinite soluzioni. Per avere un'unica soluzione dobbiamo affiancare
alla equazione delle condizioni sui valori che essa, e le sue derivate successive, assumono in alcuni punti. Un'equazione differenziale
affiancata da indicazioni di questo tipo viene chiamata modello differenziale.

Ad esempio s"(t) =35, s'(0) =1, s(0) =2, ossia l'equazione differenziale s"(t) = 5 assieme alle condizioni s'(0) = 1 e s(0) =2,
costituiscono un modello differenziale che ha come soluzione s(t) = 2.5-t* +t+2.

Un altro esempio. Quali sono le funzioni che hanno come derivata sé stesse? A questo problema
corrisponde il modello differenziale f'(x) = f(x). Noi sappiamo che una soluzione di questa equazione ¢
f=exp. Infatti D(exp) = exp. Ma, ricordando che, se k € una costante numerica, D(k-f) = k-D(f), capiamo che
sono soluzioni anche tutte le funzioni f(x) = k-exp(x); infatti Dy(k-exp(x)) = k-Dy(exp(x)) = k-exp(x).

A destra sono rappresentate alcune funzioni di questo tipo. In blu ¢ rappresentata la soluzione
dell'equazione differenziale che si ottiene imponendo la condizione f(1) =4. Quanto vale k? Dak-exp(1) =4
ottengo k = 4/exp(1) = 4/e = 1.471.... Potrei anche esprimere la soluzione come f(x) = 4-exp(x—1). Infatti
4/exp(1)-exp(x) = 4-exp(x)/exp(1) = 4-exp(x—1).

Anche molti modelli differenziali possono essere risolti utilizzando WolframAlpha. Ad esempio nei casi precedenti basta che metta
come input, rispettivamente, s" (t)=5, s'(0)=1, s(0)=2 ¢ £'(x)=£(x), £(1)=4.

Posso anche trovare valori particolari senza copiare e mettere in input la soluzione, con, ad esempio: s" (t)=5, s'(0)=1, s(0)=2,
what s(1)? € s"(t)=5, s'(0)=1, s(0)=2, what s(7)°2.

Abbiamo gia incontrato, negli anni scorsi, delle equazioni differenziali? Se ci ripensiamo, la antiderivata o primitiva di una funzione
F non ¢ altro che una soluzione G dell'equazione differenziale G'(x) = F(x), che abbiamo espresso poi anche come integrale indefinito
di F: [F(x) dx (vedi).

Invece di scrivere [ 6x dx =3x>+¢ si puo dire, in modo alternativo (e piu corretto), che I'equazione differenziale y'(x) = 6x ha come
soluzioni tutte le funzioni y(x) = 3x2+c al variare di ¢ in R.

Qualche breve considerazione storica. Lo studio delle prime equazioni differenziali risale alla fine del XVII secolo, quando, da
Newton e Leibniz, venne individuato il teorema fondamentale dell'analisi (vedi), che ha messo in relazione la derivazione e
l'integrazione. Emerse, presto, il problema che, a differenza della derivazione, per la quale esiste un procedimento standard per associare
ad una funzione la sua funzione derivata, non c'¢ una tecnica standard per associare ad una funzione le sue antiderivate. Si deve arrivare
al XVIII secolo per la messa a punto di tecniche specifiche per la risoluzione di varie classi di equazioni differenziali e per la
dimostrazione di alcuni teoremi che assicurano 'esistenza delle soluzioni di equazioni differenziali che soddisfano certe condizioni
generali. Di questi aspetti ti occuperari se proseguirai gli studi in ambito matematico o fisico. Qualche approfondimento sui modelli
differenziali lo puoi trovare nei prossimi paragrafi.

2. Equazioni differenziali del 1° ordine

L'equazione differenziale s"(t) =15, cosi come l'equazione differenziale s"(t) + 3-s'(t) —t=15, sono chiamate del secondo ordine in
quanto la derivata di massimo grado di s che compare in esse ¢ quella di secondo grado. Invece (a) s'(t)=3t+3/2 ¢ (b) f'(x) =f(x)
sono equazioni differenziali del primo ordine in quanto in esse al pitt compare la derivata prima (di s e di f).

Soffermiamoci sulle equazioni differenziali del 1° ordine. Esse in generale sono delle equazioni in cui, indicata con F la funzione
incognita e con x la variabile di input, compare F' ¢ possono comparire, oltre ad x, sia F stessa che vari simboli di funzione e di
costante. Due esempi, in aggiunta ai precedenti:

(c) sale'(t) =0.01 — sale(t)/100 d) yx)=x—-yx)
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Sotto sono rappresentati i campi direzionali (o campi di pendenza, slope fields in inglese) associati alle equazioni differenziali
precedenti: data un'equazione y'(x) = g(x,y) il campo direzionale ne raffigura le possibili soluzioni rappresentando per una grande
quantita di punti (x,y) un segmentino centrato nel punto e con la pendenza indicata dalla equazione, ossia g(x,y).

Nel caso (a) sono tutte le funzioni t — 3/2-t> + 3/2-t + k. Nella figura ¢ evidenziata la particolare soluzione che in 0 vale —10, che
come abbiamo visto corrisponde a k =—10. Nel caso (b) sono tutte le funzioni x — k-exp(x) . Nella figura sono evidenziate la soluzione
che in 1 vale 4 e quella che in 1/2 vale —2. Anche in questo caso abbiamo visto come si puo risalire al valore di k nei vari casi.
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Consideriamo il caso (¢). Esso corrisponde al seguente problema.

Un recipiente contiene 100 litri di una soluzione contenente 5 kg di sali. Viene fatta entrare, con la portata di 1 litro/min, un'altra
soluzione con una concentrazione di sali di 10 g/litro. 1l livello é mantenuto costante mediante un'opportuna valvola. Supponiamo che
la portata sia costante e che il liquido sia costantemente mescolato.

Quanto sale rimane nel recipiente dopo un'ora?

Indichiamo con sale(t) il sale in kg presente al minuto t-esimo. Quindi sale(t)/100 ¢ la concentrazione di sale (in kg per litro) nello
stesso istante. Inzialmente la concentrazione ¢ sale(0)/100 = 0.05 ma essa via via cala in quanto viene introdotto liquido con
concentrazione di 10 g (ossia 0.01 kg) di sali per litro, ossia (esprimendosi in kg per litro) 0.01.

11 flusso di sale in entrata ¢ dunque 0.01 kg/litro-1 litro/min = 0.01 kg/min, ossia 0.01 esprimendosi in kg al minuto. II liquido esce
con la stessa velocita con cui entra (1 litro/min) ma, riducendosi la concentrazione di sale, con un flusso di sale che via via si riduce: il
flusso di sale in uscita ¢ "concentrazione di sale" - "1 litro al minuto”, ossia sale(t)/100-1 = sale(t)/100.

Riassumendo all'inizio sale(0)=5; poi il flusso di sale ¢ 0.01 — sale(t)/100. Utilizzando la derivazione il flusso ¢ sale'. Quindi il
problema di riduce al seguente modello differenziale:

sale'(t) = 0.01 — sale(t)/100, sale(0)=>5.

Nella figura seguente a sinistra ¢ tracciato il campo direzionale di sale'(t) = 0.01 — sale(t)/100 ed ¢ evidenziata la soluzione che
corrisponde alla condizione sale(0) = 5. Il problema richiedeva quanto sale rimane dopo un'ora, ossia quanto vale sale(60). Dal grafico
ricaviamo che sale(60) ~ 3.2 (kg). Sono illustate anche le soluzioni che corrispondono a sale(0) = 1, in cui la concentrazione iniziale di
sali € 1/100 = 0.01, uguale a quella del liquido che viene immesso (la soluzione ¢ quindi la funzione che vale sempre 1), ¢ a sale(0) =
0.25, in cui la concentrazione iniziale di sali € 0.25/100 = 0.0025, minore di quella del liquido immesso.
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La figura a destra rappresenta il campo direzionale di y'(x) =x — y(x) e due soluzioni particolari, quella che corrisponde alla
condizione y(—1) =3 e quella che corrisponde a y(2) = 0.5.

Impiegando WolframAlpha:

s'(t) = 0.01 - s(t)/100 s'(t) = 0.01 - s(t)/100, s(0) = 5, what s(60)°?

y'(x) = x - y(x) y'(x) = x-y(x), y(-1) =3 y'(x) = x-y(x), y(2) = 0.5
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3. Equazioni differenziali del 2° ordine

Questo argomento, toccato in alcune scuole, ¢ difficile da affrontare nella scuola secondaria superiore. Qui ci limitiamo ad illustrare
qualche esempio.

Il primo esempio rappresenta I'equazione differenziale che esprime la posizione di un oggetto sottoposto ad una forza che sia
proporzionale (con un fattore di proporzionalita negativo) alla distanza da una posizione fissata; potrebbe essere un oggetto fissato ad una
molla. Sey ¢ la distanza (in una opportuna unita di misura) e x il tempo (in una opportuna unita di misura), la relazione ¢ del tipo y" (x)
= -k -y (x). Se fisso, in un istante dato, la posizione ¢ la velocita, posso esplicitare y in funzione di x. Nella figura & rappresentato oltre
al grafico della soluzione (in un particolare caso) quello della relazione che lega y e la velocita y'. Nel caso di questo fenomeno ¢ una
curva chiusa in quanto la soluzione ¢ periodica. [vedi qui per approfondimenti]

[
[
~

y e = —ary e, y@=2, y =0 |||

x

'II YHAAD I
Con WolframAlpha: i ||| i ||| [1] .
"

Gli esempi successivi sono riferiti a situazioni simili alla precedente in cui pero, nel primo caso, l'oggetto viene spinto ad ogni
passaggio, aumentando 1'ampiezza delle oscillazioni, e, nel secondo, si € in presenza di un fluido che smorza le oscillazioni.
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4. Equazioni alle derivate parziali

Le equazioni differenziali alle derivate parziali (ossia che coinvolgono le derivate parziali della funzione incognita rispetto a piu di una
variabile), a differenza di quelle ordinarie, hanno soluzioni che non dipendono da costanti arbitrarie ma da funzioni arbitrarie. Sono usate
soprattutto per affrontare alcuni argomenti di fisica. Ci limitiamo ad alcuni esempi.

Vediamo un primo esempio di equazione alle derivate parziali (I'incognita ¢ f):
fay) _ x
ay | djdy f(xy) = x B
Siamo in grado di risoverla direttamente: la derivata rispetto a y di f(x,y) € x se
f(x,y) ¢ del tipo x'y; ma possiamo addizionare a X'y un qualunque termine che
non contenga y, in quanto la sua derivata rispetto a y ¢ zero. Quindi le soluzioni 2fe y) =x
sono del tipo: x-y+g(x) con g(x) funzione arbitraria. dy

Verifichiamo la cosa con WolframAlpha (vedi la figura a fianco): introduco
d/dy f£(x,y) = x eottengo £(x,y) = cl(x) + x*y (quicl(x) qui indica una
generica funzione di x). OK.

First—order linear partial differential equation

. o . e . X, ¥) =c1(X)+xy
Facciamo due esempi di soluzione, e verifichiamoli: fx, ) X+ X

e f(x,y) =xy+x3, of(x,y)/0y =x+0=x;
e f(x,y) =x'y +sin(x), of(x,y)/0y =x+0 =x.

Sotto sono illustrati due altri esempi di equazioni alle derivate parziali:

| dr2/dy”2 fxy) = x B | daxday fixy) =0 =)
& flx, ¥ ;
fl\“)):x ﬁaﬂx‘,\)zg
ay* dx dy
Second—order linear partial differential equation Second—order linear partial differential equation
xy
flx, ¥) = yca(x) +¢1(x) + T flx, ¥) =cq(x) +ca(y)

Se vuoi approfondire questo argomento vedi qui.

5. Esercizi

So che g'(x) =10, h'(x) =-5, k'(x)=—x+0.3. Che cosa posso dire sul valore di g(x), di h(x) e di k(x)? E nel caso in cui sappia
che i grafici di tutte queste funzioni passano per il punto (7, —2)?
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Risolvi con WolframAlpha il problema £' (x) = 4*£(x), £(0) = 1 e, poi, giustifica la risposta ottenuta senza far ricorso al
computer.

Un razzo, dopo 60 secondi dal lancio, sta muovendosi verticalmente con I'accelerazione costante di 20 m/s?, che, da quell'istante,
mantiene per almeno un paio di minuti. E alla quota di 20 mila metri dal suolo, e, in quell'istante, ha una velocita di salita di 1000
m/s. Quale quota raggiunge dopo un altro minuto e mezzo? Che velocita ha in quell'istante? [risolvi il problema con WolframAlpha
e indica gli input che hai dato al programma; devi ottenere 116 000 m e 2 800 m/s]

led| Qual ¢ la funzione y(x) taleche y' (x)=(1+x*2)/x*2, y(-2)=0? Qual ¢ l'intervallo di massima ampiezza in cui essa &
definita?

Risolvi con WolframAlpha il problema y"(x)=sin(x), y(w)=2, y'(m)=—1 e verifica, a mano, la soluzione trovata. Saresti stato in
grado di risolvere il problema senza usare WolframAlpha? Come?

Risolvi con WolframAlpha il problema y"(x)=cos(x), y(0)=0, y'(0)=1 e verifica, a mano, la soluzione trovata. Saresti stato in
grado di risolvere il problema senza usare WolframAlpha? Come?

Data I'equazione differenziale y' (x) = 1+x/(y(x)~+2+1) tracciane il campo direzionale in [-8,4]x[—4,4]. Traccia, poi, i grafici
delle due soluzioni tali che y(—6)=1 e che y(2)=0. Trovane i valori che esse hanno in, rispettivamente, 2 ¢ —2, e confrontali con quelli
ottenibili con WolframAlpha.

Data I'equazione differenziale y' (x) = (y-x)/(x-4*y) tracciane il campo direzionale in [-2,2]%[—2,2]. Trova quanto vale in 2
la soluzione che passa per (—2,1.5) e confronta il valore con quello che ottieni con WolframAlpha. Rivedi, poi, I'ultimo esempio
discusso nel paragrafo 3; quindi cerca quali sono le soluzioni passanti per (—2,1) e per (—2,1/2); confronta poi i valori trovati con
quello che ottieni con WolframAlpha e spiega perché questi sono sbagliati.

In modo simile a quello con cui sono studiate le equazioni differenziali del 2° ordine
presentate nel 4° paragrafo, studia 'equazione differenziale che corrisponde al fenomeno in
cui l'oggetto ¢ immerso in un fluido che smorza le oscillazioni secondo un fattore che ¢ 10
volte quello dell'ultimo esempio [-10-y'(x) invece di -y'(x)], la "distanza" inziale
dell'oggetto dalla posizione di riferimento ¢ 1, la "velocita" iniziale ¢ 0. Dovresti ottenere

che y in funzione di x ha un grafico simile a quello a lato. 0 2 4 5 8 1IO
3 af(x, y) P afix, y ) _ m Introducendo 3*(d/dx f(x,y)) + 2*(d/dy f(x,y)) = 0, trova con WolframAlpha le soluzioni
ax Ay dell'equazione alle derivate parziali considerata a lato. Sotto ¢ tracciato il grafico di una soluzione.

Individuane altre e scrivi le istruzioni per rappresentarne il grafico con WolframAlpha.
| fy) =sin(y-2%x/3) for 4<=x<=4, 4<=y <=4 |

3 —4t04

?’.. :I .
-2 : —4t04
5 -z f(x,y):sin(y—? EJ
4

1) Segna con l'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:

equazione differenziale (§1), modello differenziale (§1), eq. differenziale del 1° ordine (§2), eq. differenziale del 2° ordine (§2),
campo direzionale (§2), eq. alle derivate parziali (§5)
2) Su un foglio da "quadernone", nella prima facciata, esemplifica l'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.
3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").

script: piccola CT grande CT isto isto con % boxplot striscia 100 ordina Grafici GraficD divisori Indet distanza Triang
€q. Dolinomiale eq.nonPolin sistemalin moltPolin sempliciEq divisori fraz/mcd oDFraz SumPro sin LenArc Poligono
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