Approfondimenti di Analisi Matematica

1. Richiami
2. I polinomi (e le serie) di Taylor
3. Le serie di Fourier
4. 1l gradiente
3. Esercizi
== Sintesi

1. Richiami

Sappiamo che una funzione puo essere approssimata in un punto dato, in cui sia derivabile, dalla funzione che ha per grafico la sua
tangente, che ¢ una funzione polinomiale di 1° grado, o una funzione costante. Piu in generale abbiamo ricordato, nel "riassunto" di
analisi matematica, qui, come una funzione possa essere approssimata con una funzione polinomiale anche di grado maggiore. Nel
primo paragrafo di questa scheda approfondiremo questo aspetto. Nei successivi, che sono da intendere come approfondimenti per
alcuni tipi di scuole, saranno approfonditi alcuni argomenti pitt 0 meno collegati al precedente: metodi per approssimare funzioni con
somme di seni e coseni, la derivazione di una funzione di piu variabili, ...

2. I polinomi (e le serie) di Taylor

La figura a lato ricorda che, per x — 0, cos(x)—1 = —x3/2, ovvero cos(x) = 1-x?/2: posso approssimare il
grafico di cos attorno a 0 con una parabola. Vediamo perché.

In 0 cos ha come tangente la retta y=1. Quindi, attorno a 0, ¢ approssimabile con la funzione che vale
costantemente 1. La pendenza di questa retta I'ho trovata calcolando la derivata di cos in 0: D(cos) =—sin e
—sin(0) = 0.

Cerco ora la funzione polinomiale P di 2° grado x — ay+a;x+a,x* col grafico che meglio approssimi la

curva attorno all'ascissa 0. Impongo che P abbia una pendenza che vari attorno a 0 con la stessa velocita con
cui varia quella di cos. Posso esprimere cio imponendo che la derivata della sua derivata in 0 coincida con
quella di cos.
In breve occorre che P(0) = cos(0) (il polinomio P in 0 valga quanto la funzione cos), P'(0) =cos'(0) (P in 0 abbia la stessa pendenza
di cos), P"(0) =cos"(0) (P in 0 abbia grafico incurvato come quello di cos):
P(0) = cos(0) =1, P'(0) = cos'(0) =—sin(0) =0, P"(0)=—sin'(0) = —cos(0) = —1.
P(0) =[ay+a;x+a,x?] .o =y, P'(0)=[a;+2-a,"X] oo = a5, P"(0) =[2-a,] y—( =2a,.

Quindi: ay,=1, a; =0, a,=-1/2. Ossia: P(x) =1—x%2
Data una funzione F che sia piu volte derivabile nel punto Q, posso trovare un polinomio che ne approssimi l'andamento nei pressi di
Q anche di grado maggiore al secondo. Basta che imponga che siano uguali a quelle di F anche le sue derivate in Q di ordine maggiore
al secondo (F™ ¢ la derivata di F", F"" ¢ la derivata di F'", ...). Polinomi di tal genere sono chiamati polinomi di Taylor (dal nome dello
studioso inglese che, intorno al 1715, ne ha approfondito lo studio, pochi anni dopo che erano stati "inventati").
Vediamo qual ¢ il polinomio P(x) di 3° grado aj+a;x+a,x*>+a3x*> che approssima sin(x) nei pressi di 0.
Occorre che:
P(0) =[ayta;xta,x*+a;x’] o = a2y, P'(0)=[a;+2-ay,'x+3-a3'x*] oo =2a;, P"(0)=[2-a,+3-2-a3X] o0 = k
2a,, P"(0) =[3-2-a3] y— = 6a3,
e che tali valori siano eguali a: b
F(0) = sin(0) = 0, F'(0) =sin'(0) = cos(0) =1, F"(0)=cos'(0) =—sin(0) =0, F"(0)=—sin'(0) =—cos(0) =—1. ‘0
Quindi: a,=0, a; =1, a,=0, a3=-1/6. Ossia: P(x) =x —x%/6.
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Qual ¢ il polinomio P(x) di 4° grado a0+a1x+a2x2+a3x +a4x4 che approssima cos(x) nei
pressi di 0? Occorre che:

P(0) = [a0+a1x+a2x2+a3x3 +a4x4] x=0 = A, «ees P&(0) = [4:3-2-a4] = = 2424 (P sta per P'™),
el e che questi valori siano eguali a:

o TR T RO)=cos(0)=1, FY(0)=cos|(0)=sin(0)=0, F"(0)=—sin'(0)=—cos(0)=—1, F

4 o o0 2" 4 (0=—cos(0)=sin(0)=0, F¥(0)=sin'(0)=cos(0)=1.

Quindi: ag=1, a; =0, a,=—1/2, a3=0, a,=1/24. Ossia: P(x) =1 —x*2 +x%24.

Generalizzando si puo dimostrare che se F ¢ una funzione ad 1 input ed 1 output derivabile nel punto a fino all'ordine N, allora per x
— a F(x) & eguale a P(x) a meno di un infinitesimo di ordine superiore a (x—a)N, dove P(x) ¢ il polinomio di Taylor cosi definito:

F(a) + 2 - 1N FO@) (x-a)* / k!
Questo termine viene chiamato polinomio di Taylor di ordine N ma non ¢ detto che sia un polinomio di grado N. Potrebbe infatti

essere di grado minore: basta che F™(a) sia nullo. Ad esempio 1-x%2 ¢ il polinomio di Taylor di sin sia di ordine 2 che di ordine 3, in
quanto se sviluppo la formula precedente fino ad N = 3 ottengo lo stesso valore ottenuto per N = 2 in quanto la derivata 3* in 0 ¢
—sin(0) che vale 0.

Volendo, si puo dimostrare che se esiste in a anche la derivata N+1-esima, allora il resto, ossia la differenza tra F(x) e P(x), ¢
infinitesimo non solo di ordine superiore a (x—a)", ma di ordine eguale o superiore a (x—a)""!. Per indicare questi due concetti si
usano notazioni differenti: ad es: F(x) = P(x) + o((x—a)?) ("o piccola") indica la presenza di un termine che per x — a ¢ trascurabile

rispetto a G(x); invece F(x)=P(x)+ O((x—a)?) ("o grande") indica la presenza di un termine che per x — a ¢ dello stesso ordine o &
trascurabile rispetto a G(x).
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Verifica che il polinomio che approssima sin(x) attorno a 0 a meno di un infinitesimo di ordine superiore a 6 ¢:
P(x)=0+ 1'x +0/2:x% - 1/6-x> + 0/24-x* + 1/120-x> + 0/720-x® = x — x3/6 + x°/120

Sotto sono rappresentate le funzioni seno e coseno e alcuni dei relativi polinomi di Taylor attorno a 0.

I polinomi di Taylor sono facilemente determinabili con WolframAlpha:
taylor polynomial of sin(x) at x=0
x - x*3/6 + x*5/120 - x~7/5040 + x~9/362880 - x711/39916800 + O(x"13)

EI Utilizza WolframAlpha per trovare i polinomi di Taylor della funzione coseno rappresentati nella figura precedente.

So che la funzione log ¢ definita per input positivi, che per x — 0+ log(x) — —© e che per
x — o log(x) — oo, come si ¢ ricordato anche nel riassunto di matematica richiamato all'inizio
della scheda. So che log(1)=0. Posso approssimare con un polinomio log attorno ad 1. Se uso
WolframAlpha e batto taylor polynomial of log(x) at x=1 ottengo:

x—1 — (x=1)22+ (x=1)33 = (x=1)%4 + (x=1)°/5 — (x—1)%/6 + O((x—1))
A lato sono rappresentati graficamente i polinomi di Taylor fino a quello di ordine 6.
Prova a determinarli anche "a mano", fino a quello di ordine 3.

EI Prova ad ottenere, da quanto visto nell'esercizio precedente, 'approssimazione polinomiale di log(1+x) attorno a 0.
Poi verifica la risposta con WolframAlpha battendo taylor polynomial of log(1+x) at x=0.

; E A sinistra & rappresentata graficamente la funzione exp e alcuni suoi polinomi di Taylor

attorno a 0. Verifica con WolframAlpha che:
' exp(x)=1+x+x*2+x3/3!1 + ...+ x%6! + O((x—1))

~-  Posso anche stimare l'errore:

N sl A F(x) = Fla)+ =, _; x F®@) (x-a)k/k! + R(x)

: 4 dove R(x) = FN*D(e) (x—a)N*1/ (N+1)!

® Ecco per esempio come valutare la precisione con cui x—x3/6 approssima sin(x) nell'intervallo [-0.1, 0.1].
Perx=0 x—x3/6=0. R(x)=D®)(sin)(c)/5! x> = cos(c) x°/5!

|cos(x)| < 1; quindi |R(x)| < 1:0.13/5!=1/12:10 "9 < 10”7, Stimo ad es. sin(0.1): 0.1-0.1%/6 = 0.09983333. L'errore & minore di 107

Quindi assumo sin(0.1) = 0.09983333+1077. 0.09983323 = 0.09983333-10"7 < sin(0.1) < 0.09983333+1077 = 0.09983343; posso
assumere con sicurezza l'arrotondamento sin(0.1) = 0.099833. Se potessi disporre di una calcolatrice otterrei sin(0.1) = 0.09983342.

Calcoliamo, usando il polinomio di Taylor, il limite di una funzione, ad es. (sin(x)*~x-log(1+x2)) / (x>(1—cos(x))) per x — 0. Eun
calcolo concettualmente semplice ma un po' complicato calcolisticamente.
* Numeratore ¢ denominatore tendono a 0. Approssimo il denominatore.
x> (1-cos(x)) = x:(x%/2 + O(x*) =x7/2 + 0(x?)
* Approssimo il numeratore. Uso il fatto che attorno a 0 (vedi es. 4) log(1+x) =x —x*2 +x*/3 + ...
log(1+x%) = x> — x*2 + x93 + O(x%)
x-log(1+x%) = x3 - x°2 + x7/3 + 0(x°)
sin(x) = x — x3/3! + O(x°)
sin(x)® = (x—x>/31+0(x%)): (x—x/31+0(x7)) (x—x>/31+0(x°)) = x> — x7/2 + 13-x7/120 + O(x°)
sin(x)>—x-log(1+x%) = (13/120-1/3)x’ + O(x%) = —9/40-x” + O(x°)
® A questo punto posso concludere che per x — 0:
(sin(xy—x-log(1+x%)) / (3(1-cos(x))) = (x7/2 + O(x?) ) / (~9/40-x + O(x®) ) — =9/20 = ~0.45.
E stato un po' faticoso, ma ci siamo arrivati. Ovviamente si poteva fare tutto facilmente con WolframAlpha introducendo:
limit (sin(x)*3-x*log(l+x*2)) / (x"5*(l-cos(x))) as x -> 0

Chiudiamo questo paragrafo con una osservazione. Prima ricordiamo che, come abbiamo visto piu volte, si possono considerare
somme infinite di numeri. Ad esempio, dalla scuola elementare, so che la somma di 0.3, 0.03, 0.003, 0.0003, ... ¢ 0.3333...=1/3. In
breve: 0.3+0.03+0.003+0.0003+... = 1/3. Nella scuola superiore ho visto che, volendo, posso esprimere cid considerando la

successione s, s,, S5, ... dove s, =3+3/10'+...+3/10" e dire che il limite di s, per n — o0 & 1/3. Successioni come s, che esprimono



una somma di numeri a,+a,+...+a, vengono chiamate serie..

Non tutte le serie convergono. Ad esempio 142+3+... non converge in quanto le somme 1, 1+2, 1+2+3, ... non hanno risultati che si
stabilizzano. Neanche 1+1/2+1/3+... converge, come posso verificare con WolframAlpha battendo 1+1/2+1/3+1/4+... (prova anche a
cercare, su WolframAlpha, harmonic series).

La cosa puo essere dimostrata:
1+12+1/3+... =1+ (1/2+1/3+...+1/10) + (1/11+...+1/100) + (1/101+...+1/1000) + ... >
1+ (1/10+1/10+...+1/10) + (1/100+...+1/100) + (1/1000+...+ 1/1000) + ... =
1+9-1/10+90-1/100 + 900-1/1000 + ... = 1 +0.9+0.9+0.9 + ...

Se come addendi invece di numeri considero delle funzioni f;(x), £5(x), f3(x), ... parlo di serie di funzioni. Per quanto ricordato sopra,
¢ ovvio che per alcuni valori di x una serie f}(x)+f,(x)+f3(x)+... possa convergere e per altri possa non convergere (0, come si usa dire,

possa divergere).
Se una funzione F ammette derivate di ogni ordine in un intervallo I contenente a posso considerare i polinomi di Taylor attorno ad a
di ogni grado, ovvero considerare la serie di Taylor di punto iniziale a:

F(x) = F(a) + F'(a)-(x—a) + F"(a) (x-2)%/2 + F®)(a)-(x—a)3/6 + ...
= Fa)+ Ty -1 F®) (x—a)k/k!
Senza approfondire ulteriormente 1'argomento, osserviamo che gli sviluppi in serie di Taylor di exp, sin e cos attorno a 0 convergono su

tutto R, mentre quello di log attorno ad 1 converge solo nell'intervallo (0, 2]. Vedi, qui sotto, i grafici di exp e log e quelli di alcuni loro
polinomi di Taylor. Lasciamo ad un esercizio indicazioni per eventuali approfondimenti.

3. Le serie di Fourier

Si puo dimostrare che ogni funzione F continua in un intervallo [~h, h] puo essere espressa come una serie di Fourier, ossia come una
serie infinita di seni e di coseni:
F(x)=Ag+Z | =1 o (Ar-cos(k-x) + By sin(k-x))

I termini Ay -cos(k-x) + By sin(k-x) sono funzioni periodiche di frequenza crescente, e sono chiamati, in ordine, prima, seconda, terza,
... armonica.

Ogni funzione periodica (anche non continua) puo essere approssimata con un polinomio di Fourier. Ci limitiamo a vedere alcuni
esempi. Se proseguirai negli studi potrai sviluppare il tema (in un esercizio sono comunque presenti indicazioni per eventuali
approfondimenti).

Jean-Baptiste-Joseph Fourier (1768-1830) fu un matematico e fisico francese. Tra l'altro, studiando la propagazione del calore, introdusse gli
sviluppi in serie che portano il suo nome.
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f(x) = 4/n-sin(x) + 4/n-'sin(3x)/3 + 4/n-sin(5x)/5 + 4/m-sin(7x)/7 + ...

La "somma" ¢ la funzione che associa -1 agli input tra -n e 0, 1 a quelli tra 0 e 7. Possiamo verificare la cosa con WolframAlpha
digitando "fourier series expand" e introducendo gli input scritti qui sotto (in blu):

fourier series expand
function to expand Piecewise[ { {-1, -pi < x < 0}, {1, 0 < x < pi} } 1
variable x
order 10

4sin(x) 4sin(3x) 4sin(5x) 4sini(7x) 4sin(9x)
+ + + +
T 3w Sm VE: Qm

Altri esempi:
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1, 2 e 3 addendi (vedi); 200 addendi (vedi)
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f(x) = 4/n-'sin(2x)/2 + 4/n-'sin(4x)/4 + 4/n'sin(6x)/6 + 4/n-'sin(8x)/8 + ...
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£(x) = n?/3 + 4-(-1)1/1% cos(1'x) + 4-(-1)2/2% cos(2'x) + 4-(-1)3/3% cos(3'x) + ...

Questo argomento ha molte applicazioni in fisica, per studiare i fenomeni ondulatori, ad esempio di natura ottica e sonora, ed anche in
molti ambiti tecnologici (per realizzare apparecchi fotografici digitali, per restaurare film e registrazioni, per memorizzare le impronte
digitali, ...).

Per dare un'idea delle applicazioni ci limitiamo a riportare la seguente immagine, in cui si vede un raggio solare che entra in un prisma
a sezione triangolare e ne esce separato spazialmente in colori "puri", i colori dell'arcobaleno (essa mostra come un'onda possa essere
espressa come sovrapposizione di onde sinusoidali). Per approfondimenti di natura fisica vedi qui.

LUCE SOLARE SPETTRO

4. 1l gradiente

Nella scheda Funzioni di piu variabili abbiamo introdotto il concetto di derivata parziale. Ora accenniamo al concetto di gradiente per
venire incontro alle esigenze di chi lo trova nei programmi scolastici. Si tratta, comunque, di un tema che puo essere approfondito solo
negli studi universitari.

Data una funzione F di due variabili, il suo gradiente, indicato con grad(F) o con VF, ¢ la funzione vettoriale che ha come componenti
le due derivate parziali di F: VF(x,y) = (OF(x,y)/0x, OF(x,y)/0y).

Calcolo ad esempio il gradiente di F: (x,y) — 6x / 2+x?+y?). E facile calcolare le due derivate parziali, ma lo faccio con
WolframAlpha. Ottengo:
grad ( 6%x/(2+x72+y~2) )
( (6% (—x*2+4y~2+2)) / (x72+y~2+42) 22, - (12*x*y) / (x*2+y~2+2)*2 )

Vediamone il significato geometrico. Traccio prima il grafico della funzione, e le sue curve di livello.
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x . ) 5 4 2 0 2 4 6%
I grafici sono stati realizzati con WolframAlpha mediante il comando plot z = 6*x/ (2+x*2+y*2), -6 <= x <= 6, -5 <=y <= 5
Vedo che ci sono un punto di massimo ed uno di minimo. So che questo accade dove le derivate prime si annullano. Cio equivale al
fatto che il gradiente sia (0,0). Vediamo dove accade: -x"2+y"2+2 =0 & 12*x*y =0; ovvero: y =0 & x =+V2. Si vede dalla figura
soprastante che i punti (¥2,0) e (—2,0) sono proprio i punti di massimo e di minimo della funzione.

WolframAlpha automatizza questi procedimenti:
min z = 6*x/ (2+x*2+y*2), -6 <= x <= 6, -5 <=y <=5 ottengo:
min{6*x/ (2+x*2+y*2) | -6<=x<=6 & -5<=y<=5} = -3/sqrt(2) at (x,y) = (-sqrt(2),0)
max z = 6*x/(2+x*2+y*2), -6 <= x <= 6, -5 <=y <=5 ottengo:
max{6*x/ (2+x"2+y*2) | -6<=x<=6 & -5<=y<=5} = 3/sqrt(2) at (x,y) = (sqrt(2),0)

Vediamo che cosa rappresenta il gradiente nei punti dove non si annulla. z] la salita pii ripida

Nel caso delle funzioni di una variabile il valore assoluto della derivata in un punto ¢ la pendenza del
grafico in quel punto, mentre il segno della derivata rappresenta se la funzione cresce o decresce.

Nel caso di una funzione F di due variabili ci interessa la direzione in cui avviene il cambiamento con
massima pendenza, e il valore di questa pendenza. Il gradiente di F rappresenta il vettore (orizzontale) che
indica la direzione in cui F varia piu rapidamente. 1l modulo del gradiente rappresenta la velocita di questa
variazione, ovvero la pendenza (positiva) della superficie lungo tale direzione. Le componenti del gradiente

§ ¥
indicano la rapidita della variazione nelle direzioni degli assi x e y. grad(F)
E intuitivo capire che il gradiente in P, se diverso da 0, & perpendicolare alla curva di livello passante per ~ *

P. La direzione di una curva di livello passante per un punto P indica la direzione lungo cui il gradiente si
annulla.

z=Flx,y)

Le componenti del gradiente (ossia le due derivate parziali) indicano l'intensita della velocita della variazione nelle direzioni degli
assi. In generale, fissata una qualunque direzione, la proiezione lungo di essa del gradiente di F indica l'intensita della velocita con cui
varia F in tale direzione. Se u ¢ il versore unitario che rappresenta la direzione, questa proiezione non ¢ altro che il prodotto scalare (dot
product) V(F)-u (vedi la scheda sui vettori).

Come nel caso di una funzione in una variabile il fatto che la sua derivata in x sia nulla non ¢ sufficiente per dedurre che in X vi sia un
max o un min relativo (puo esservi un flesso), cosi in quello di una funzione di due variabili non basta che il gradiente in P sia nullo,
ossia che P sia un punto stazionario, affinché in P vi sia un estremo relativo. Nel caso precedente per (V2,0) ¢ (—V2,0) la cosa ci era
assicurata dall'andamento del grafico. Eccone uno in cui ¢io non accade.

Consideriamo la funzione F: (x,y) — sin(x)-sin(y). Ecco i grafici con WolframAlpha mediante il comando
plot z = sin(x)*sin(y), -PI*3/2 <= x <= PI*3/2, -PI*3/2 <= y <= PI*3/2
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I punti segnati con dei pallini sono quelli in cui si azzera il gradiente, che ¢ (cos(x)-sin(y), sin(x)-cos(y)), ossia (0,0), (£7/2, +n/2), e
tutti gli altri punti che si ottengono da questi aggiungendo "periodi". Abbiamo segnato con dei pallini rossi i punti di massimo e con dei
pallini celesti i punti di minimo, le cui coordinate potremmo trovare con gli stessi comandi max € min usati sopra.

Nei punti segnati in nero, (0,0) e gli altri punti dove i riquadri si incrociano - ossia (7.0), (0,7), (n,7), ... - non si hanno minimi o
massimi. Sono punti, come si vede nella figura sotto a sinistra, di minimo lungo la "cresta dei monti" e di massimo lungo la "strada del
valico". Per la loro forma vengono chiamati punti di sella. Possiamo individuarne la presenza con WolframAlpha mediante il comando
saddle points of z = sin(x)*sin(y); vedi la figura sotto a destra.

saddle points of
z = sin(x)=sin{y)

1.0
055 710
0.0
0.5

?J B

Nei punti di sella le curve di livello si intersecano. Avvicinandosi a quelli di minimo e di massimo le curve di livello tendono a ridursi
ad un punto.

Avremmo potuto visualizzare i punti stazionari anche con stationary points sin(x)*sin(y)

5. Esercizi

Trova il polinomio di Taylor di ¢ % attorno a 0 usando il comando taylor polynomial of exp(-2*x) at x=0 in WolframAlpha.
Spiega come puoi ottenere lo stesso polinomio utilizzando lo sviluppo di * visto nella scheda.

Determina i polinomi di Taylor di cos attorno a 0 di ordine 2, 4 e 6. Calcolane il valore in w/6. Stabilisci quale approssimazione
di cos(n/6) puoi dedurre da tali valori. Confronta quanto hai ottenuto col valore effettivo di cos(n/6).

Occorre stare attenti usando WolframAlpha per studiare la convergenza di una serie quando il risultato € un intervallo finito. Puo
essere che dia la convergenza solo per la parte interna dell'intervallo mentre la serie potrebbe convergere anche in uno degli estremi.
Conviene allora fare la verifica, sempre con WolframAlpha, come spiega il seguente esempio. Svolgi i calcoli descritti. Che cosa
ottieni?

taylor polynomial of log(1+x"2) at x=0 1-1/2+1/3-1/4+...

Considera le funzioni (x,y) — x*+y? e (X,y) — Xx'y. Sotto sono tracciati i grafici di esse e quelli di alcune loro curve di livello.
Associa ad ogni funzione il grafico di essa e delle sue curve di livello. Verifica la risposta con WolframAlpha.
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Abbiamo visto che 1+1/10+1/10>+1/10%+... converge a 1.111... = 1+1/9. Abbiamo pure visto che 1+1/2+1/22+1/23+... converge a
2. In modo simile si dimostra che, se |x| <1 1+x+x"2+x"3+... converge. Verifica la cosa con WolframAlpha e trova, in funzione di
X, il valore a cui converge; controlla che il risultato trovato sia in accordo con i due esempi precedenti. Analogamente si dimostra
che converge ogni serie x;+X,+x3+... tale che esista un K positivo e minore di 1 per cui da un certo posto in poi [x,| sia minore di

K:|x,|. Verifica, usando questo criterio, che la serie 1+1/2+1/3!+1/4!+... converge; prova a trovare quanto vale la somma. Dimostra
che la serie 1+1/2+1/3+1/4+... non verifica questo criterio.

Se vuoi approfondire alcuni di questi aspetti vedi qui.

1) Segna con l'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:

polinomi di Taylor di ordine N (§2), serie di funzioni (§2), serie di Fourier (§3), gradiente (§4), punto stazionario (§4), punto di sella (§4)

2) Su un foglio da "quadernone", nella prima facciata, esemplifica 1'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.

3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").
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