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0. Introduzione

Nel primo biennio abbiamo introdotto la frequenza cumulata (vedi Le statistiche 3) e le prime nozioni pobabilistiche (vedi Il calcolo
delle probabilita). Nella classe terza abbiamo esteso questi concetti a varie leggi di distribuzioni, discrete e continue, e abbiamo precisato
i collegamenti tra statistica e probabilita (vedi Quale matematica per i fenomeni casuali? e Il teorema limite centrale). Qui
affronteremo lo studio di alcune altre leggi di distribuzione che hanno un ruolo importante sia nelle applicazioni che nello studio
"teorico".

1. Le funzioni di ripartizione

Quando ho un istogramma di distribuzione, se sommo via via le colonnine, come fatto sotto (dopo eventualmente averne ridotto
l'altezza proporzionalemente), ottengo una figura la cui ordinata, da sinistra a destra, parte da 0 ed arriva ad 1, ossia al 100%. La figura a
destra ¢ l'istogramma delle frequenze cumulate. Qui puoi vedere un'animazione che spiega meglio questo fenomeno. I1 50% centrale dei
dati cade tra 63 ¢ 77.
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Sotto sono riprodotti i grafici delle funzioni di densita della distribuzione uniforme e di quella gaussiana e i grafici delle corrispondenti
funzioni di ripartizione, che corrispondono a quello che, nell'esempio precedente, era l'istogramma delle frequenze cumulate. Sono
ottenuti, invece che sommando I'area delle colonnine degli istogrammi, calcolando 1'area che sta sotto ai grafici delle distribuzioni.
Quest'area, come sappiamo, ¢ calcolabile mediante gli integrali. Ad esempio nel caso della distribuzione a sinistra, rappresentata dalla
funzione F che ad x in [0,1] associa F(x) = 1, la funzione di ripartizione ¢ la funzione che ad x associa | 10, x] F-
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In entrambi i casi la mediana (ossia il 50° percentile) coincide con la media (in un caso 1/2, nell'altro 0) in quanto si tratta di
distribuzioni simmetriche.

Qual ¢ la funzione di ripartizione della distribuzione uniforme tra 0 ed 1?

2. Un esempio

Consideriamo, ora, un esempio "fantastico", tratto dalla rivista Scientific American, per introdurre 1'impiego di alcune distribuzioni
utili ad affrontare alcune situazioni "concrete".
Ogni secondo arriva uno zombie di fronte a un muro lungo 1 in cui € praticata un'apertura ampia w. Gli zombie che non passano
attraverso l'apertura, dopo la facciata contro il muro, si rialzano e si predispongono a ritentare I'avventura, per cui il flusso di zombie &
senza fine, e sempre con lo stesso regime. Inoltre:

(1) le posizioni 1ungo il muro in cui arrivano gli zombie hanno distribuzione uniforme (non viene privilegiata alcuna parte del muro),
per cui, ovunque sia collocata I'apertura, per essa c'é¢ un flusso stazionario di zombie (la media teorica del numero di zombie Ny, che

passano in un intervallo di tempo fissato ¢ proporzionale a w: esiste una costante positiva A tale che M(N,,) = A-w);

(2) la posizione di arrivo di ogni zombie ¢ indipendente da quella di ciascuno dei precedenti, cio¢ siamo di fronte a un flusso senza
memoria;
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(3) ¢ trascurabile la probabilita che due o piu zombie arrivino praticamente nella stessa posizione, ciog, al rimpicciolire dell'apertura,
la differenza relativa tra Pr(1<Ny,) e Pr(N,,=1) tenda ad annullarsi (per w — 0 Pr(N,=1)/Pr(1<N,) — 1); in casi come questo si parla

di flusso ordinario.

Si puo simulare il fenomeno usando generatore di numeri pseudocasuali. Basta indicare con w la
ampiezza della apertura e ogni secondo eseguire 1'istruzione:
if(random() < w) {U = 1} else {U = 0}
U=1 indica il passaggio dello zombie per l'apertura
(evento con probabilita w = AmpiezzaApertura / LunghezzaMuro),
U =0 il non passaggio.

Infatti il generatore di numeri pseudocasuali verifica (1) e (2), come abbiamo gia osservato, e (come si puo controllare
sperimentalmente) verifica anche (3).

Sviluppando questa idea ¢ stato realizzato un programma (che non esaminiamo) che simula il fenomeno nel caso in cui w = 1/10. Man
mano che arrivano gli zombie esso calcola i tempi di attesa tra un passaggio per 1'apertura e il passaggio successivo. Ecco un
possibile esito del programma (qualche ora simulata in pochi istanti).

17, 10, 8,36,7,21,1,6,2,8,3,5,7,3,7,2,2,6,2,15,12,10,2, 18,1, 19, 14,22,6,2,2,7,4,8,12,6, 12,2, 17,4, 1,3, 5, 15, 11, 1, 4, 16, 6, 11, 6, 20, 2, 14, 1, 15,
38,1,7,23,10,4,25,1,1,4,11,7,1,4,2,6,7, 15,4, 20, 17, 3, 15, 8, 16, 2, 15, 3, 3, 3, 30, 13,23, 19, 38, 18,4, 17, 1, 1, 1, 21, 5,45, 11, 3, 5, 2, 19,9, 5, 16, 5, 1, 1,
35,12,6,22,29,16,13,8,9,12,4,4,1, 10, 1, 2, 10, 22, 2, 2, 16, 20, 12, 5, 5,2, 12, 1,9, 1, 26,37, 1,6, 2,8,7,6, 1, 5,8, 6,6, 19,4, 23, 12, 33,4, 3, 8, 4, 2, 28, 20,
10, 15, 15,4,5,2,3,1,1,18,4,2,15,10,6, 1,9, 5, 32, 1, 31, 20, 10, 5, 23, 1, 9, 11, 3, 20, 14, 5, 5, 5, 1, 18, 3,23, 7, 10, 10, 14, 3, 8,9, 3, 8, 1, 21, 3, 5, 2, 31, 1, 31,
1,3,37,5,7,4,21,7,7,2,13,4,4,1, 1, 8,25, 18,4, 5,6, 14, 17,2, 11,6, 5,6,8,1,9,1,6,9,4, 1,5, 1, 14,6, 12,3,3,7, 6, 3, 10,31, 3, 3,4, 8,4, 12,5, 1, 3, 1, 18,
25,6,24,14,2,1,29,23,31,15,24,2,2,5,4,5,15,3,3, 14,11, 5,2,9,45,3,4,4,21,9, 16,4, 12, 17, 12,4, 14, 3,4, 20, 5, 8, 8,6, 21, 19,4, 5, 5, 5, 28, 18, 9, 10
3,12,2,2,4,15,2,7,3,4,8,6,10,14,7,14,13,9,4,5,12,1,3,4, 14,8, 1,6, 3, 16, 1, 6,9, 2, 3, 6, 21, 15, 2, 20, 18,9, 7, 3, 5, 7, 18
Sotto a sinistra questi esiti analizzati con lo script Istogramma:
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Se calcoliamo quanti zombie passano per I'apertura in 60 secondi otteniamo (simulando per qualche ora):

9,8,74,8,3,3,8,3,3,6,7,2,3,4,9,4,10,1,4,3,7,4,7,9,4,10,5,4,3,4,3,9,4,5,6,2,3,9,5,4,7,6,8,6,1,7,1,11,8,6,5,5,7,6,9,6,6,5,7,4,4,7,5, 5,
6,3,9,8,5,4,3,7,10,8,1,4,6,7,6,11,8,6,8,7,9,3,6,10,5,6,6,2,3,8,4,1,9,5,4,6,8,3,3,5,13,10,4,7,4,7,6,7,3,6,8,9,4, 11, 10, 3,9, 7, 8,4, 8, 9, 3,
5,9,3,11,2,9,4,5,4,8,5,8,4,4,4,7,7,5,6,12,2,4,6,4,5,6,5, 10, 5, 10,9, 6, 4, 8, 12,6, 5,5,7,6,7,4,9,2,10,7,3,6,5,5,6,6,3,6,7,5,8,8,3,8,5, 3, 3,
2,3,6,4,9,9,6,3,10,8,4,5,3,12,5,6,4,13,2,10,5,5,7,7,8,1,9,4,8,1,2,8,8,6,7,3,3,5,6,5,10,9,8, 3,6,5,5,6,5,7,2,10,4,5,3,8,5,6,6,3,5,4, 6,
7,2,8,4,8,12,3,8,3,4,5,6,3,2,4,6,5,5,4,6,4,4,8,5,5,7,5,5,8,2,7,3,2, 10

Con lo stesso script analizziamo questi dati, con I'esito riportato sopra a destra.

Come si vede, 'istogramma a sinistra, del tempo di attesa tra un passaggio per la porta e il successivo (una variabile continua), ha,
grosso modo, andamento decrescente, simile all'istogramma della = distribuzione esponenziale negativa. Quello del numero degli
zombi che passano ogni minuto (una variabile discreta) ha un andamento a campana asimmetrica, che ha qualche somiglianza con una
= binomiale.

Nel prossimo paragrafo approfondiremo lo studio di questa somiglianza.

3. Le leggi esponenziale e di Poisson

Diamo i nomi TZ (tempi tra 2 passaggi) e NZ (numero passaggi in 1 min) alle due sequenze di dati. Analizziamoli anche con la
grande CT.

median=6 14,3” quartile, diff.: 3 14 11 median=6 1~,3” quartile, diff.: 4 8 4
mean=9.4750656167979 mean=5.7986111111111
experimental standard dev.= 8.5423115821618 experimental standard dev.= 2.51983037178971

® L'analisi di 7Z, in cui media e deviazione standard sono quasi uguali, rafforza I'idea che la differenza temporale Dy, tra due successivi
passaggi per 'apertura abbia distribuzione esponenziale negativa, come nel caso dei tempi di attesa tra una telefonata e l'altra nella
situazione considerata nella scheda = Quale matematica per i fenomeni casuali?

Si puo dimostrare teoricamente che, nelle ipotesi fatte, Dy, (sopra studiata statisticamente) ha effettivamente funzione di densita x —

w-e "~ con w = ampiezza della apertura del muro, cioé¢ con 1/w = tempo di attesa medio (in sec). Vedi la figura seguente a sinistra.
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® ['andamento dell'istogramma di NZ ¢ simile a quello di una binomiale non simmetrica. In realta si puo dimostrare che, fissata una
durata di tempo T (in sec), il numero di zombie Ny, che passano per I'apertura in un intervallo di tempo ampio T ha legge di
distribuzione:

n

a e—@ Con @ =numero medio di zombie che

Pr(Ny,=n) =
Ny=m) n! passano per l'apertura nel tempo T

Poiché nel nostro caso T =60, a =wT = 6. Vedi la figura sopra a destra (in cui si € considerato solo n tra 1 e 13, in corrispondenza
degli esiti sperimentali).

E una funzione (di n) che all'inizio sale quasi esponenzialmente, poi scende, quando n! prevale su a". Essendo una legge di
distribuzione abbiamo:

Pr(Ny,=0) + Pr(Ny,=1) + Pr(N=2) + ... = 1, e quindi:
(1+a+d?2+d3 3! +a%4+ ..)) -e ?= 1. Dunque dev'essere:
l+a+a®2+a3 +a¥4+ ... =
Avevamo gia visto = che, per x — 0, eX = x + 1, anzi che e*=x + 1 + x%2. In effetti si pud dimostrare che e*X=x + 1 +x%/2 + x>/3!,
e cosi via. Non vedremo qui la dimostrazione di questo fatto.

Osserviamo che Pr(N,,=0), valore che esprime la probabilita che non passino zombie, deve essere uguale a Pr(D,,>T), cio¢ alla
probabilita che la differenza temporale tra due passaggi sia maggiore di T.

Verifichiamolo: Pr(Ny=0) =¢“; Pr(Dy>T) = 1-Pr(D,<T) = 1-(1-e™"T) =W = ¢4

Questa legge di distribuzione si chiama legge di Poisson (di parametro a - spesso il parametro viene indicato con la lettera greca A,
"lambda").

Si puo dimostrare che M(N,,) = Var(N,,) = a.

Cio ¢ in accordo con gli esiti sperimentali, riportati sopra: media = 5.94444; s.q.m. = 2.2246; \5.94444 = 2.43812, quasi uguale allo
s.q.m..

4. Ancora sulla legge esponenziale

Un fenomeno che si distribuisca come i tempi di arrivo del fenomeno sopra considerato da luogo ad un istogramma che tende ad
assumere la forma del grafico di una funzione esponenziale f: x — w-exp(—w-x), con w = 1/10. Sotto, a destra ¢ rappresentato il grafico
della funzione g che ¢ la corrispondente ripartizione, ossia g: x — | [0, x] -

0.1 1

0 100 0 100

Qual ¢ l'espressione analitica di questa funzione di ripartizione g?

Nella scheda di avvio alla = integrazione si € visto che ¢ ancora una funzione esponenziale. Infatti d exp(x)/dx = exp(x), quindi
d exp(k-x)/dx = k-exp(k-x), e quindi d exp(—w-x)/dx = —w-exp(—w-X).

Quindi g(x)=] [0,x = f[o, x] Wrexp(—w-t) dt = —exp(—w'x) + exp(—w-0) = 1 — exp(~w'X).

E Da indagini statistiche risulta che un particolare tipo di automobile esaurisce la batteria in media dopo 17 mila km e che la durata di
una batteria ¢ una variabile casuale di tipo esponenziale. Se acquisto un'auto di questo modello e intraprendo un lungo viaggio, di 8
mila km, qual ¢ la probabilita che lo concluda senza cambiare la batteria? [traccia: indichiamo con S la strada in migliaia di km per
cui dura una batteria, sia 1/w la media di S; devo cercare la probabilita che S sia maggiore di 8]

5. Ancora sulla legge di Poisson
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All'aumentare del parametro a la "poissoniana” tende ad assumere andamento simmetrico a campana.
Si vedano i grafici a destra, relativiada=6 e a=12.

Abbiamo gia osservato che la curva poissoniana assomiglia a una binomiale. In effetti si puo
dimostrare che la legge di Poisson approssima la legge binomiale B, ; con np = a, ¢ che, fissato a,

questa approssimazione migliora al crescere di n (la poissoniana, quindi, come la bernulliana, tende a y L
confondersi con una curva di Gauss, e con questa spesso pud essere approssimata). o5 20

In altre parole 'approssimazione migliora man mano che p (=a/n) tende a 0, cio¢ piu ¢ raro I'evento di cui conto il verificarsi nelle n
prove ripetute. Per questo a volte la legge di Poisson viene anche chiamata legge degli eventi rari.

L'impiego della legge di Poisson ¢ frequente. Infatti sono molte le situazioni che si comportano analogamente alla situazione degli
"zombie", cio¢ in cui si ha a che fare con:

(1) elementi che si distribuiscono uniformemente in un certo "spazio",

(2) cadendo in modo stocasticamente indipendente in sottospazi disgiunti, e

(3) tendenzialmente, senza sovrapporsi.

e si vuole valutare la probabilita che cada una certa quantita di elementi in una porzione di spazio di dimensione w fissata, noto il numero

medio a di elementi che cadono in una porzione di dimensione w.

Una lamiera presenta dei piccoli difetti che si collocano in modo soddisfacente le condizioni sopra descritte, con densita di 0.03
difetti per cm?. Dimostra che la probabilita che un pezzo di 10 cm? abbia almeno un difetto & 0.26.

Anche le situazioni di "eventi rari" possono essere interpretate in questo modo.

Consideriamo, ad esempio, un campione radioattivo che contenga 2.5-10%! nuclei; ogni nucleo abbia, in ogni istante, la probabilita
5.2:1072! di decadere entro 1 minuto; vogliamo trovare qual ¢ la probabilita che il numero N dei decadimenti in un minuto sia 2.
Dovremmo assegnare ad N la legge B, , con n=2.5 10%1 e p=5.2- 102 (e praticamente costante), ma ci troveremmo di fronte ad

elevamenti alla potenza che, senza disporre di un adeguato strumento informatico, sarebbero proibitivi. Con la nostra grande CT
possiamo, comunque, fare il calcolo:

|2.5e21 |2 |

Q|5.2e-21 |

Qual ¢ la probabilita che il numero dei decadimenti in un minuto sia 2.

Se non disponessi di un software adeguato come potrei fare? Per quanto osservato sopra potrei approssimare questo valore usando la

legge di Poisson con a =np = 13: Pr(N=2) = 13%/2:¢13=1.91-10*. Ma anche senza passare attraverso la binomiale potrei osservare
che gli atomi decadono in tempi che si succedono rispettando le condizioni (1) — (3) (ad esempio la (1) corrisponde al fatto che
I'emissione di elettroni € pit 0 meno costante), e che il numero medio (a) di nuclei che decadono nel tempo di 1 minuto (w) € np.

6. Esercizi

Consideriamo gli "zombie" di §2. Quanto ¢ il tempo medio esatto (non statisticamente, ma nel modello probabilistico) tra due

~ passaggi successivi? Qual ¢ il numero medio esatto di zombie che passano per l'apertura in un minuto? Qual ¢ lo scarto quadratico
medio esatto del numero degli zombie che passano per I'apertura in un minuto? Qual ¢ lo scarto quadratico medio esatto del tempo
tra due passaggi successivi?

Per quale numero H la funzione G: x — H-x ¢ una densita di probabilita nell'intervallo [0,4]?

Per quale numero K la funzione G: x — K-x? & una densita di probabilita nell'intervallo [0,1]?

[e4| Sia X una variabile casuale distribuita esponenzialmente con una funzione di densita G: x — 7-exp(~7-x) nell'intervallo [0,00).
Qual ¢ la media M di X? Qual ¢ la sua deviazione standard S? Qual ¢ la probabilita che X sia compresa tra M—S e M+S?

[e5] Se, nell'esercizio precedente, al posto di 7 avessi un altro numero positivo K, quale sarebbe la probabilita che X sia compresa tra
M-S e M+S?

La densita media dei microbi nocivi per metro cubo di aria in un certo ambiente ¢ 100. Qual ¢ la probabilita che un campione di 2
litri di aria abbia almeno un microbo?

Il numero medio di avarie in un impianto per la produzione di acido solforico ¢ 3.5 per settimana (7 giorni). Se le avarie
avvengono del tutto casualmente, qual € la probabilita che in un giorno particolare non vi siano avarie? In quanti giorni dell'anno
(365 giorni) ci si aspetta che si verifichino due o piu avarie? [devi ottenere come risposte 61% e 33 giorni]

1) Segna con I'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:
distribuzione esponenziale negativa (§2), distribuzione di Poisson (§2), legge degli eventi rari (§3).

2) Su un foglio da "quadernone", nella prima facciata, esemplifica l'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.
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3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").
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