“Problemi, soluzioni, codifiche” — Didascalie per le diapositive

2. 1l metodo descritto (e provato) da Euclide per il calcolo del massimo comun divisore é ritenuto il
primo significativo esempio di algoritmo. Altrettanto famoso é il “crivello” ideato da Eratostene di
Cirene per eliminare via via i numeri non primi dalla successione dei naturali.

3. Spesso si legge, o si sente dire, che Ada Byron ¢ stata la “prima programmatrice” della storia; in
realta, ella aiuto Charles Babbage (e ne sostenne le idee e le iniziative) dopo che questi, nel 1834,
concepi il progetto della “macchina analitica”, peraltro mai costruita: un enorme calcolatore meccanico,
mosso da un motore a vapore, comandato da sequenze di istruzioni codificate su schede perforate,
comprese diramazioni condizionate per poter eventualmente ripetere o saltare una sotto-sequenza di
istruzioni (a seconda del segno del risultato dell’ultima operazione), e dunque impiegabile per calcolare
qualsiasi “formula analitica”... Ada ebbe comunque la capacita di vedere questa macchina in modo
ancor piu astratto: per elaborare informazioni, non soltanto per eseguire calcoli!

I1 “programma” attribuito ad Ada, il cui lavoro si svolse a stretto contatto con Babbage, ¢ frutto del
tentativo di formalizzare in una procedura il calcolo dei numeri di Bernoulli (che, in effetti, € una
successione di razionali) servendosi di una formula iterativa: lo commenteremo, traducendolo in
ambiente Maple, in due diverse modalita, sintatticamente quasi identiche ma con esiti assai differenti.

5. Le tre equazioni, mutuamente esclusive, definiscono una funzione totale, dalle coppie di naturali ai
naturali, che non pu0 essere espressa con gli usuali cicli for (ove € previsto un numero di iterazioni si
variabile in funzione dei dati, ma precalcolato).

6. Per qual motivo, all’inizio del nostro discorso, abbiamo detto “prima del 1945”? Era ancora il 1941,
quando I’ingenere civile tedesco Konrad Zuse completo la realizzazione del primo computer digitale,
pienamente operativo, tutto a relé elettromagnetici e controllato da programma (esterno, a sola lettura,
perforato su una pellicola da film)... Ma durante gli ultimi anni del secondo conflitto mondiale,
rifugiatosi in un piccolo villaggio sulle Alpi bavaresi, Zuse invento e sviluppo un complesso linguaggio
di programmazione, che chiamo Plankalkul. Questo fu il primo linguaggio di alto livello ad essere
concepito, ma rimase sulla carta: all’epoca non poteva darsi altrimenti; comunque anticipo — Seppur
prematuramente — alcune importanti idee anche per |’organizzazione e 1’elaborazione delle
informazioni. Zuse specifico il suo Plankalkil non tanto formalmente, quanto piuttosto attraverso
numerosissimi esempi di applicazione, tutti riportati in un manoscritto di trecento fitte pagine...

8. Qui ho trascritto (e corretto) uno di questi esempi: si tratta dell’ordinamento per inserimento, a
scansione diretta, particolarmente adatto nelle situazioni in cui la sequenza da ordinare € in realta gia
quasi ordinata, ossia presenta relativamente pochi valori fuori posto. Il manoscritto che lo codifica
precede di circa un anno le lezioni di John Mauchly e la pubblicazione delle relative dispense, nel 1946,
presso la Moore School of Electrical Engineering, sulle tecniche di ordinamento (sia interno, sia esterno)
comprensive di questo metodo.

9. I flow-chart furono introdotti da Herman H. Goldstine e John von Neumann nel 1947, corredati di
appositi blocchi contenenti asserzioni automaticamente soddisfatte ogniqualvolta il controllo vi passa,
e ancor oggi simili diagrammi sono usati...

10. ... forse in maniera un po’ “intricata”, a dispetto delle raccomandazioni di mezzo secolo fa sui buoni
principi di programmazione!

11. Ecco due aspetti di fondamentale importanza in programmazione, che ne scoprono le radici logico-
matematiche, ... gia evidenziati negli anni 40 ma a lungo trascurati dagli sviluppatori di software!

12. 1l “pensiero computazionale” puo essere sviluppato a partire dalla scuola primaria...



13. ... con l’ausilio di vari strumenti; uno dei piu validi, a mio parere, ¢ XLogo, un recente dialetto
(sviluppato presso il Politecnico Federale di Zurigo) del famoso linguaggio LOGO, che nacque nel 1967
ad opera principalmente di Seymour Papert.

16. Puo risultare un po’ difficoltoso scrivere i comandi giusti per ricollocare la tartaruga allo scopo di
disegnare una figura che si ripete: bisogna infatti fare attenzione alla posizione e all’orientamento che
essa assume quando termina il disegno di ciascuna figura.

17. Si pud mettere in risalto, con semplici esempi, anche la struttura gerarchica di un programma...

23. Un altro ambiente adatto ai primi approcci & Scratch, basato sulla composizione di blocchi (che si
istanziano sullo schermo e poi si collegano tra loro o si innestano 1’uno nell’altro, trascinandoli con il
mouse), sviluppato presso il MIT all’inizio di questo secolo.

27. In Python, in una lista di n elementi (ovvero di lunghezza n), agli elementi € associato un indice da
0an-—1. Unabuona idea é partire dall’ultimo arrivato, risalendo man mano fino al primo...

29. ... e pensare che questi — tutti risolvibili producendo algoritmi assai efficienti! —sono tra i problemi
per certi aspetti piu facili proposti alle Olimpiadi di Informatica a Squadre!

30. Soffermiamoci piuttosto su alcuni significativi esempi di programmi (e di comandi) in ambiente
Maple, che possiamo trovare nella cartella programmi_Maple ...

11 problema dell’isomorfismo tra grafi, cosi come quello della fattorizzazione, sta in una specie di limbo,
a quanto pare poco popolato: per questi problemi non sono stati trovati (almeno finora) metodi generali
efficienti (tempo-polinomiali), né si € provato che siano tanto impegnativi quanto i cosiddetti “NP-
ardui” (quelli che si sospettano veramente intrattabili quando la loro dimensione supera un certo limite).
Nello stesso limbo, fino al 2002, si trovava un altro problema famoso: quello della primalita.

39. Con “algoritmo efficiente” gli informatici intendono un procedimento che, per essere eseguito,
richiede un tempo, al piu, polinomiale, cioé limitato superiormente da un polinomio, nella lunghezza
dei dati in ingresso codificati in bit. (Usualmente, poi, s’ intende che tale polinomio non debba avere un
grado troppo elevato!)

Minimum Spanning Tree, ossia albero ricoprente di costo minimo: e un sottografo connesso minimale
(togliendo uno qualsiasi dei suoi archi, non e piu vero che da ciascun nodo si puo raggiungere ogni altro
nodo) o, equivalentemente, aciclico massimale (aggiungendovi un arco si crea inevitabilmente un ciclo,
cioé un cammino chiuso), comprendente tutti i nodi del grafo (non orientato e pesato), e tale che la
somma dei costi degli archi che lo compongono sia la piu piccola possibile.

Il piu antico procedimento risolutivo per questo problema, e forse anche il piu facile da realizzare, &
1I’algoritmo di Boriivka, ideato da Otakar Bortivka nel 1926 per la costruzione di una rete elettrica in
Moravia: la rete deve giungere in tutti i punti prestabiliti (i nodi del grafo) senza creare percorsi chiusi;
i costi sono le distanze tra due punti (per tutte le coppie di punti). L’algoritmo di Kruskal (Joseph B.
Kruskal, 1956) € un altrettanto semplice esempio di algoritmo greedy (goloso, ingordo): ad ogni passo,
si collegano i due nodi piu vicini, facendo soltanto attenzione a che non si creino cicli. Infine,
1’algoritmo di Prim (Robert C. Prim, 1957, ma gia pubblicato da Vojtéch Jarnik, in un articolo in lingua
ceca, nel 1930) ispiro 1’algoritmo di Dijkstra (Edsger W. Dijkstra, 1959), ancora greedy, per trovare i
cammini di costo minimo da un nodo a tutti gli altri (piu in generale, in un grafo orientato).

Visitare un grafo (anche orientato) a partire da un certo nodo significa, in pratica, costruire un albero
che tocchi tutti 1 nodi raggiungibili da quello di partenza (prescindendo dagli eventuali costi)...

Con “problema difficile” gli informatici intendono, sostanzialmente, un problema (in generale) per la
cui esatta risoluzione non si conosce alcun algoritmo efficiente: o non si conosce perché si sa che non
esiste proprio (come accade per i problemi intrinsecamente esponenziali, ad esempio le torri di Hanoi),
0 non si conosce e non si sa neppure se ne esista uno. Per i problemi qui menzionati vale quest’ultima
accezione, e si tratta di una notevole questione aperta dell’informatica teorica.



Problema del ciclo (o circuito, se il grafo e orientato) hamiltoniano: si deve trovare, se ¢’¢, un cammino
chiuso che includa tutti i nodi, una e una sola volta ciascuno, e se il grafo é pesato (ossia con un costo
associato a ciascun arco) si richiede anche che tale cammino chiuso sia di costo minimo (Travelling-
Salesman Problem, ossia problema del commesso viaggiatore).

Bin-Packing, ossia problema dell imballaggio: disponendo di contenitori (bin) tutti uguali, ciascuno dei
quali sopporta un certo peso massimo P, e data una lista di n numeri (p, ..., pn) che rappresentano i
pesi di n oggetti, si tratta di ripartire tutti questi n oggetti nel minor numero di contenitori, in modo tale,
ovviamente, che la somma dei pesi in ciascuno di essi non superi P. (Tutti questi numeri sono intesi
essere interi positivi, con ognuno degli n pesi minore o uguale a P.)

Multiprocessor Scheduling: eseguire un insieme di processi (di ognuno dei quali si conosce la durata)
su un certo numero di processori (identici) in parallelo, facendo si che il tempo richiesto per eseguirli
tutti sia minimo; gli eventuali vincoli di precedenza sono espressi da un grafo orientato aciclico.
Partendo da quesiti proposti in diverse gare di informatica per studenti della scuola secondaria,
illustreremo 1 problemi “di sottoinsieme” che qui sono stati citati...

40. ... ma prima vorrei discutere un problema di Minimum Spanning Tree, tratto dalla gara finale della
prima edizione del Kangourou dell’Informatica (maggio 2009), con qualche ritocco... Sembra facile
codificare I’idea. Tuttavia ’idea giusta prevede di ripartire inizialmente i vertici in altrettanti insiemi;
due vertici si potranno collegare se appartengono a insiemi diversi (altrimenti si formerebbe un ciclo),
e, se si collegano, i rispettivi insiemi dovranno essere uniti...

44. Ecco un esempio molto semplice di grafo: & una mappa, dove accanto ai vari tratti € riportato il
tempo di percorrenza (che qui puo variare a seconda del verso). Piu precisamente, in questo caso si parla
di grafo orientato e pesato. Ha senso chiedersi quale sia il cammino piu breve tra due dati punti o tra
tutte le coppie di punti, ammesso che la destinazione sia raggiungibile.

Di solito, i grafi che rappresentano mappe sono “planari”; tuttavia, i procedimenti ideati per questo tipo
di problema sono efficienti in ogni caso.

45. Fu un grande informatico, I’olandese Edsger W. Dijkstra, a ideare un procedimento efficiente per
trovare il cammino piu breve tra due specificati nodi di un grafo qualsiasi.

53. L’ultima frase offre spunti di riflessione... Vi sembrera strano, ma cercare il percorso piu lungo da
un nodo a un altro in un grafo (non passando mai due volte in uno stesso nodo), oppure stabilire se c'e
un percorso che passi una e una sola volta per ciascun nodo (un cosiddetto cammino hamiltoniano),
sono problemi per i quali non si conoscono, € non si sa neppure se esistano, metodi efficienti per
risolverli in generale.

94. Poiché ogni arco ha il “costo” di un minuto, basta una visita in ampiezza!

56. Per la visita in profondita (piu in generale, in un grafo orientato, ossia con archi diretti) ci soccorre
una delle tecniche piu generali di programmazione, detta backtracking. Dal nodo in cui ci troviamo, ci
spostiamo — seguendo un arco — sul primo nodo non ancora visitato; quando 1’esplorazione da
quest’ultimo nodo sara conclusa, ci sposteremo sul secondo nodo raggiungibile non ancora visitato, e
cosi di seguito. Quando si sono esaurite tutte le possibilita di spostamento dal nodo in cui ci troviamo,
torniamo indietro di un arco, cioé ci riportiamo sul nodo dal quale siamo giunti... e se questo non ¢ piu
possibile, vuol dire che il nodo in cui ci troviamo e quello di partenza e tutti i nodi, che da questo sono
raggiungibili seguendo un cammino, sono stati visitati. Il backtracking & utilmente impiegato nella
ricerca esauriente — vale a dire “a tappeto” — di una o di tutte le soluzioni di un problema (qui tutte,
ricordando il cammino corrente...), secondo 1’idea ricorrente di esplorazione in avanti e — in caso di
fallimento — ritorno sui propri passi, Sino a trovare una via alternativa non ancora esplorata.

57. Chiusura transitiva: se ¢’¢ un arco daaab e ¢’¢ un arco da b a c, allora aggiungiamo (se non c’¢
gia) un arco da a a c. Se sulla diagonale principale della nuova matrice di adiacenza ci sono tutti 0, il
grafo originario e aciclico.



60. Esistono problemi non risolubili (almeno in via automatica, persino disponendo di una quantita
illimitata sia di memoria sia di tempo), e questo si sa gia dagli anni 30 del secolo scorso, prima ancora
che un computer “universale” fosse costruito...

Tra quelli invece risolubili da una macchina, certi richiedono una quantita di risorse accettabile,
pensiamo soprattutto al tempo: per tali problemi si conoscono procedimenti risolutivi efficienti, vale a
dire che al crescere della dimensione del problema il tempo per risolverlo aumenta si, ma non in modo
eccessivamente drammatico (almeno entro certi limiti), come gia abbiamo avuto occasione di vedere.

61. Per altri problemi risolubili, invece, si sa per certo che proprio non puo esistere alcun metodo
risolutivo efficiente: sono dunque problemi di fatto intrattabili al crescere della dimensione dei dati di
input, poiche il tempo richiesto per risolverli diviene rapidamente proibitivo, persino per i super-
computer piu veloci al mondo.

Tuttavia non é stato facile trovarne di non banali: il primo, nel 1972, riguarda un problema decisionale
(con risposta “si” 0 “no” soltanto) nell’ambito della teoria dei linguaggi formali.

Il confine tra queste due classi di problemi (“trattabili” e “intrattabili”, secondo le accezioni assunte)
non é affatto netto, anzi si tratta di una grande zona assai misteriosa, in cui si trovano tantissimi problemi
interessanti. Due di questi (fattorizzazione, isomorfismo tra grafi) li abbiamo gia citati...

In quello stesso anno 1972 furono “scoperti” parecchi problemi “difficili” (cio¢ assai impegnativi, anche
per un potente computer, quando la loro dimensione cresce), per i quali fino ad oggi non e stato trovato
alcun procedimento efficiente in generale, né si sa se esista; vale a dire che non é stato neppure
dimostrato che il tempo necessario per risolverli cresca in modo esponenziale.

62. Questa ¢ I’istanza del problema dello zaino, con varianti, proposta alla gara finale del Kangourou
dell’Informatica, nel maggio del 2011.

66. Per comporre una certa somma, scegliamo ad ogni passo il taglio piu grande possibile.
Caratterizzare 1 sistemi monetari, per i quali questo procedimento “goloso” porta al minimo numero di
monete, € — se non shaglio — una questione tuttora irrisolta qualora i tagli disponibili siano piu di
cinque... Questo problema, in realta, ¢ una variante proprio di Knapsack.

68. Questa tabella di 8 righe per 8 colonne fu presentata in un quesito della selezione scolastica,
nell’ambito delle Olimpiadi di Informatica del novembre 2016, accompagnata dal seguente testo.
L’obiettivo ¢, partendo da una casella della prima riga (R1), arrivare a una casella dell’ottava riga (R8),
minimizzando la somma dei valori nelle caselle dalle quali si passa. Le mosse consentite sono: un passo
verso I’alto in verticale, un passo verso 1’alto a sinistra, un passo verso ’alto a destra; per esempio, dalla
casella (R2, C3) si puo andare in (R3, C3) o in (R3, C2) o in (R3, C4).

Quanto vale la somma minima di un percorso dalla prima all’ultima riga?

Per rispondere a questa domanda occorre anche determinare un percorso ottimo! Idem se fosse richiesta
la somma massima... Si puo evitare una ricerca esauriente, a tappeto, che esamini tutti i percorsi
possibili, da ognuna delle caselle di R1 a ognuna delle caselle di R8? [che sono 2" + (¢ — 2)-3"1in
totale, dove r = numero di righe e ¢ = numero di colonne, e dunque nel nostro caso ben 13378...]

La risposta, affermativa, ci viene dalla programmazione dinamica, una delle piu generali tecniche
algoritmiche insieme con il backtracking e la programmazione lineare. (Parlando di programmazione
lineare, il termine “programmazione” ha poco a che fare con la stesura di codici per computer: si
riferisce piuttosto alla pianificazione degli impieghi di certe risorse al fine di rendere massimo il profitto
che ne deriva. L’etimologia di “programmazione dinamica” ¢ simile: tale locuzione fu infatti concepita
per I’ottimizzazione di processi multi-stadio, in particolare per quelli la cui evoluzione possa essere
descritta da un grafo orientato privo di cicli.)

Come possiamo procedere? Partiamo dalla penultima riga (R7), e per ognuna delle sue caselle ci
chiediamo: se siamo giunti qui, dove ci conviene salire? Ad esempio, se siamo giunti in (R7, C4), a
prescindere dal percorso fatto e dalla somma finora accumulata, ci conviene salire verso 1’alto in
verticale, aggiungendo 5 al valore 6 della casella (R7, C4), mentre se dovessimo totalizzare la somma



massima ci converrebbe salire alla riga superiore verso destra, aggiungendo 9 al valore 6. Scriviamo
dungue queste informazioni nella casella (R7, C4). Cosi facciamo per tutte le caselle di R7, e quindi
scendiamo in R6. Anche qui procediamo in modo analogo per ciascuna casella della riga. Ad esempio,
quando siamo in (R6, C5), che ha valore 7, ci conviene salire a sinistra, aggiungendo 11; dovendo invece
totalizzare la somma massima, dovremmo salire a destra, aggiungendo 25 (calcolato allo stadio
precedente, come somma di (R7, C6) e (RS, C7)). Scendiamo poi in R5... Si noti che qualora si
giungesse, ad esempio, in (R5, C3), che ha valore 4, conviene salire a sinistra o in alto (aggiungendo 6,
mentre osservando soltanto i1 valori locali si salirebbe a destra, dove ¢’¢ 1) o, cercando il massimo, a
destra (aggiungendo 20, quando invece, in base ai meri valori locali, si sarebbe portati a salire a sinistra,
dove c¢’¢ 5). Qualora si presentassero alternative equivalenti, come appunto in (R5, C3), sara sufficiente
ricordarne una sola. E cosi procedendo, una volta conclusi i calcoli sulla prima riga (R1), saremo in
grado di sapere quale sara la somma minima (o massima) che potremo totalizzare, e sapremo anche da
quale casella di R1 iniziare il percorso e in quale direzione risalire ad ogni passo!

Completate voi lo schema! Si trovano due diversi percorsi a somma minima 26. [In totale, si fanno
soltanto (r — 1)-(3c — 2) operazioni locali, nel nostro caso 154.]

€ 39

78. Con “problema decisionale” s’intende un problema la cui soluzione ¢ binaria: o “si” 0 “no”.

80. Con vmax Si intende, ovviamente, il massimo dei valori degli n oggetti.

Ma che cosa significa NP-hard (NP-arduo, o NP-difficile, in italiano)? NP sta per “non-deterministico
polinomiale”, e vuol dire che questo problema potrebbe essere risolto in tempo polinomiale da un
ipotetico algoritmo tale che, se una soluzione del problema esiste, ad ogni passo compie la scelta giusta
per arrivare alla soluzione piu vicina, mentre, se il problema non ammette soluzione, ad ogni passo fa
la scelta che conduce al fallimento piu lontano... All’atto pratico, ai fini del nostro discorso: ¢ proprio
uno di quei problemi per risolvere i quali non disponiamo di un algoritmo tempo-polinomiale nella
lunghezza in bit dei dati di input, e non sappiamo neppure se un tale algoritmo esista.

Tuttavia, in questo caso specifico, cio € vero in un senso un po’ meno forte rispetto ad altri, come ad
esempio i1 problemi dell’imballaggio e del commesso viaggiatore, per i quali nemmeno disponiamo di
algoritmi pseudo-polinomiali.

81. Un altro problema in cui si rivela preziosa la programmazione dinamica € la ricerca della piu lunga
sottosequenza che due sequenze (in questo caso, due stringhe di caratteri) hanno in comune; non si
richiede che i caratteri della sottosequenza siano consecutivi in qualcuna delle due sequenze date, ma
che sia rispettato lo stesso ordine in entrambe...

84. Come si vede, lo schema risultante é analogo a quello di Knapsack.

85. Uno tra i piu famosi problemi (e pure, in generale, tra i “pi0 impegnativi”, almeno in linea di
principio) che si sospettano intrattabili & quello (di ottimizzazione) del commesso viaggiatore.

Dato un grafo pesato arbitrario, si deve trovare, se c’¢, un percorso chiuso (un ciclo, o per dir meglio
circuito se il grafo é orientato) che tocchi una e una sola volta ciascun nodo (ossia, hamiltoniano) e che
sia piu breve possibile (ottimo).

Rimane ugualmente impegnativo anche soltanto stabilire se esiste un cammino (anche non chiuso)
hamiltoniano.

89. Nel 2016, per la gara Bebras dell’Informatica, il gruppo della Svizzera propose lo scenario qui
raffigurato per un quesito, il cui spunto era dato dalla solita comunita di castori che deve decidere in
quali dei dieci punti allestire tre presidi di pronto soccorso, in modo tale che da ciascuno degli altri punti
sia possibile raggiungere un pronto soccorso nuotando per un solo tratto di canale.

In generale, quando si deve trovare in un grafo non orientato un insieme di nodi di cardinalita minima,
tale che ciascuno degli altri nodi sia collegato da un arco con almeno uno di questi, si dice che si deve
risolvere un problema di minimo insieme dominante (Minimum Dominating Set), che € NP-arduo.



Ma, sullo stesso scenario, poniamoci un’altra domanda: poiché da ciascun punto si possono controllare
tutti i tratti di canale che hanno un’estremita in quel punto, qual ¢ il numero minimo di punti nei quali
installare una torretta d’avvistamento, affinché tutti i tratti di canale siano sorvegliati? In generale,
questo e detto problema di minima copertura per nodi (Minimum Vertex Cover), pur’esso NP-arduo...

95. Con K, si denota il grafo bipartito con n nodi in ciascuna delle due parti, e ogni nodo di una parte
collegato con un arco a ciascun nodo dell’altra parte. Nel 1930, il matematico polacco Kazimierz
Kuratowski dimostro che ogni grafo non planare contiene, come sottografo, K3 3 0 un grafo completo
di 5 nodi, Ks; questi ultimi sono non planari: se provate a disegnarli, pur prestando attenzione, non
potrete fare a meno di incrociare I’ultimo arco con uno di quelli gia tracciati!

98. Il problema di minima copertura di un insieme (Minimum Set Cover) consiste nella scelta del minor
numero di insiemi (da una data famiglia di insiemi) la cui unione coincida con un dato insieme
“universo” (che spesso non ¢ altro che I’unione dell’intera famiglia).

99. In che senso possiamo affermare che Minimum Set Cover € equivalente a Minimum Dominating
Set? Se consideriamo 1’'impegno di tempo richiesto per risolverli esattamente, possiamo affermare che
sono parimenti difficoltosi; piu precisamente, si pud trasformare un’istanza dell’uno in un’istanza
dell’altro in tempo polinomiale. Mostriamo come il secondo si riduce al primo: semplicemente, ad ogni
nodo associamo I’insieme di nodi costituito dal nodo stesso e dai suoi vicini, raggiungibili percorrendo
un arco; una volta ricoperto col minor numero di tali insiemi 1’insieme di tutti i nodi del grafo, bastera
considerare — come soluzione di Minimum Dominating Set — i nodi a cui sono associati gli insiemi usati
per la copertura. Lascio a voi il compito — un poco piu impegnativo! — di ricondurre, in generale,
Minimum Set Cover a Minimum Dominating Set.

Oltre che a dimostrare I’equivalenza (quanto a onere computazionale) dei problemi elencati in una “lista
circolare” (riconducendo, in modo efficiente, ciascuno di essi al suo successivo), in informatica spesso
puod tornar comodo trasformare un problema in un altro ad esso equivalente (o piu generale), per
risolvere il quale gia si dispone di un software apposito; resta inteso che poi bisogna sapere anche come
interpretare (facilmente) i risultati per ottenere la soluzione del problema originario!

100. Se consideriamo il complemento di una minima copertura per nodi, rispetto all’insieme di tutti i
nodi del grafo, otteniamo una soluzione di un altro interessante problema di ottimizzazione: trovare il
massimo insieme indipendente (Maximum Independent Vertex Set), un insieme di nodi di cardinalita
massima che, a due a due, non sono collegati da un arco...

101. 1l grafo complementare di un grafo G ha gli stessi nodi di G, nessuno degli archi di G, e tutti gli
archi (tra due nodi diversi) che non sono in G. Un insieme indipendente € costituito dai nodi di un
sottografo completo (clique) nel grafo complementare, e pertanto ciascuna soluzione di un problema di
massimo insieme indipendente e anche soluzione del problema di Maximum Clique sul grafo
complementare, e viceversa: si tratta dunque di problemi equivalenti, quanto a onere computazionale.

102. In effetti, per il problema del massimo insieme indipendente, i migliori algoritmi finora ideati
hanno una complessita rispetto al tempo di ordine c", dove n ¢ il numero di nodi del grafo e ¢ una
costante di poco maggiore di 1.2.

103. Mi sembra istruttivo, oltre che divertente, accennare ai puzzle (o rompicapi) la cui soluzione puo
essere trovata, pitt 0 meno laboriosamente, con 1’ausilio di un computer.

Certuni sono facilmente “programmabili” con la tecnica del backtracking, basata su un’idea invero un
po’ brutale: si procede per tentativi, alla peggio si arriva a un punto morto, allora si torna indietro fino
all’ultimo tentativo fatto e se ne fa un altro, e se non ci sono altre possibilita, allora si torna ancora
indietro di un passo, e cosi via; prima o poi, 0 Si arriva a una soluzione o si sono tentate inutilmente
tutte le strade possibili, e allora vuol dire che la particolare istanza del problema non ammette alcuna
soluzione. Alla fine, se ¢’¢ almeno una soluzione, quella trovata e interamente contenuta nello “stato



finale” (magari avendo introdotto qualche piccolo accorgimento, come nel caso dell’uscita da un
labirinto), e non importa sapere come ci si ¢ arrivati. Per evitare di incorrere in cicli, se ¢’¢ questo
pericolo, basta lasciare nello stato corrente una traccia del “percorso” fatto (che alla fine indichera la
soluzione trovata).

Esempi di questo tipo di puzzle sono il Sudoku, il giro del cavallo su una scacchiera, i classici puzzle
con tessere a incastro (senza conoscere il disegno finale o la disposizione finale delle tessere): lo stato
finale, non noto, al quale si deve giungere, € proprio la soluzione del problema!

(Forzando la continuazione del procedimento anche dopo aver trovato una soluzione, si puo fare una
ricerca esauriente di tutte le soluzioni, purché il tempo richiesto non divenga proibitivo.)

105. Il programma che ho scritto non applica alcuna regola di deduzione, bensi procede esclusivamente
per tentativi, e non cerca neppure una casella che presenti il minor numero di possibilita, s’intende
almeno due (accorgimento che comunque, in generale, non minimizza il numero complessivo di
tentativi), bensi prende la prima casella che trova con almeno due possibilita: ogni volta che assegna un
numero a una casella, propaga ricorsivamente gli effetti di tale assegnazione, mediante I’eliminazione
di quei numeri che rimangono fissati, dalle altre caselle dei rispettivi riquadri/righe/colonne.

Qualora rimanga almeno una casella senza alcuna possibilita di essere riempita con un numero (ed é
sufficiente questo controllo per decidere il fallimento), il programma ripristina lo stato che precedeva
I’ultimo tentativo fatto e procede con un altro tentativo (sulla stessa casella). Si osservi 1’applicazione
“ricorsiva” (in giallo) all’interno del ciclo (in azzurro) che considera a uno a uno tali tentativi.

Se lo schema puo essere risolto, allora prima o poi una soluzione é trovata: basta controllare che sia
rimasta una sola possibilita per ciascuna casella!

107. Se, ad esempio, aggiungessimo un nono sottoinsieme, costituito da 1, 2 e 3, allora le soluzioni
sarebbero due; tre, se aggiungessimo anche il sottoinsieme formato da 1 e 2. Naturalmente, non € detto
che un’istanza di questo problema ammetta necessariamente soluzione; potrebbe non averne!

| dati per un programma al computer possono essere semplicemente messi nella forma di una matrice
di bit (cifre binarie).

113. Il merito di aver introdotto i “pentamini”, resi celebri da Solomon W. Golomb (e da Martin
Gardner) negli anni ’50, va tuttavia riconosciuto all’inglese Henry Ernest Dudeney, uno dei maggiori
inventori di enigmi e giochi matematici di tutti i tempi. Questa illustrazione comparve nella sua prima
raccolta, pubblicata nel 1907.

Dudeney, cosi come lo statunitense Sam Loyd, aveva I’abitudine di aggiungere una storiella alla
spiegazione del gioco. In questo caso, I’autore riporta un aneddoto che si riferisce a Roberto ed Enrico,
due dei figli di Guglielmo I il Conquistatore, re d’Inghilterra. Siamo nella seconda meta del secolo XI;
i due fratelli, in visita a Costanza presso la corte francese, trovano pure il tempo per svagarsi. Enrico
gioca a scacchi con Luigi, Delfino di Francia, e lo vince ripetutamente, finché Luigi, innervosito oltre
ogni limite, lancia i pezzi sul viso di Enrico, il quale a sua volta, benché trattenuto dal fratello Roberto,
riesce a rompere la scacchiera sulla testa di Luigi...

In seguito, Enrico non solo tolse il ducato di Normandia al fratello primogenito Roberto, ma pure,
approfittando dell’assenza di questi impegnato nelle Crociate, gli usurpo il trono alla morte del fratello
terzogenito Guglielmo II il Rosso, succeduto al padre, e divenne Enrico I, re d’Inghilterra... ma questa
¢ (un’altra) storia!

Dudeney immagina che la scacchiera si sia rotta nei tredici frammenti, tutti di forma diversa (i 12
pentamini piu il tetramino quadrato), che sono mostrati nell’illustrazione; invita il lettore a costruirli,
ritagliandoli da un cartoncino quadrettato, e gli assicura un divertente passatempo nel cercare di
ricomporre la scacchiera originaria — senza tuttavia precisare se le caselle siano bianche o nere anche
sul retro, e se quindi 1 vari pezzi possano essere ribaltati o meno... Dudeney ne da una possibile
soluzione, senza ribaltamenti. A voi il piacere di trovarne almeno una!



114. ... Infatti, le figure in basso non si possono ottenere per rotazione dalle corrispondenti in alto!

| pentamini sono le 12 figure che si formano con 5 quadratini di ugual lato, ove ciascun quadratino ha
un lato in comune con almeno un altro; 6 di queste figure devono essere colorate da entrambe le parti,
per poterle anche ribaltare, mentre per far assumere tutti i possibili orientamenti alle altre 6 e sufficiente
poterle ruotare.

115. Ecco un classico puzzle con i pentamini, oggetto di uno dei primi programmi che hanno impiegato
la tecnica del backtracking, progettato dall’eminente logico Dana S. Scott, il quale lo realizzo nel 1958
con I’aiuto di Hale F. Trotter, proprio allo scopo di calcolare tutte le soluzioni essenzialmente differenti
di un puzzle combinatorio con i 12 pentamini: si trattava di formare un quadrato 8x8, con un “buco”
2%2 al centro, come mostrato nella figura...

Perché fu deciso di non ribaltare proprio il pentamino P (arancione), quando e considerata la terza
possibile collocazione del pentamino X (fucsia)? Perché & quello che, sistemato cosi X, presenta il
maggior numero di possibili collocazioni, che vengono dimezzate grazie alla simmetria NW-SE!

117. Sia questo puzzle, sia uno schema di Sudoku possono essere ricondotti a istanze del problema
dell’esatta copertura di un insieme (a differenza della minima copertura, qui si richiede di scegliere
insiemi non in minor numero, bensi a due a due disgiunti), che rimane NP-arduo...

118. ... E quindi le soluzioni del puzzle di Dudeney saranno certamente meno di 16146.

Donald Knuth, grande nome dell’informatica, ha descritto algoritmi — che all’atto pratico hanno
funzionato assai bene — proprio per risolvere questo tipo di problemi: le loro prestazioni si sono rivelate
sorprendenti, persino in casi di ragguardevoli dimensioni.

119. Il caso 6x10 fu risolto per primo, in modo esauriente, da Colin Brian Haselgrove e sua moglie
Jenifer nel 1960. Il programma di John G. Fletcher, ottimizzato per questo particolare problema e
pubblicato nel 1965, comprendeva 765 istruzioni nel suo loop piu interno; venne eseguito da un
calcolatore IBM 7094, che aveva una frequenza di clock di 0.7 MHz e ad ogni singolo ciclo di clock
accedeva a due parole di memoria di 36 bit.

120. L’esecuzione dei miei programmi (non ottimizzati) sui personal computer della scuola — circa una
decina d’anni or sono — ha richiesto invece qualche ora, addirittura 10 ore nel caso del rettangolo 3x20
(dove ho proceduto con una ricerca bruta, senza sfruttare simmetrie).

121. | casi possibili sono ripartiti in classi (di cui una vuota), a seconda di come possono essere disposti
I quattro pentamini Y agli angoli.

122. Tassellare il piano (infinito) significa ricoprirlo interamente, senza vuoti né sovrapposizioni,
usando soltanto le forme (poligonali) appartenenti a un certo insieme finito: nel nostro caso, una forma
soltanto, costituita da un singolo pentamino. Dei pentamini F, T e U occorre considerare anche le copie
ruotate di 180°, mentre non c’¢ bisogno di ribaltarne alcuno.

Sebbene nell’esempio qui illustrato la forma usata non sia poligonale, il dettaglio di un affresco di
Lorenzo e Jacopo Salimbeni (nell’Oratorio di San Giovanni a Urbino) rende bene I’idea di tassellatura
periodica, che si ripete lungo due direzioni non parallele.

123. Veniamo al classico problema dell’uscita da un labirinto. In ogni casella (percorribile, qui segnata
col carattere °.”) sono al massimo quattro 1 passi da tentare. Onde evitare di ritornare sui propri passi
cadendo in circoli viziosi, bisognera ricordare le caselle gia percorse marcandole con un carattere
apposito (qui una lettera ‘0’) lasciato come un sassolino per ricostruire il percorso attuale dalla casella
di partenza; qualora si dovesse tornare indietro, basta assegnare nuovamente il carattere °.” alla casella
che si lascia, pero — per maggior efficienza — conviene assegnarvi un altro carattere (ad esempio un
asterisco, da tener nascosto, sostituendolo con il punto soltanto al momento della stampa finale) allo
scopo di ricordare che su quella casella si & gia passati, ma senza successo. E ovvio che, se il problema
ammette piu soluzioni, quella trovata dipende dall’ordine in cui si sono esplorate sistematicamente le
quattro direzioni consentite.



127. Ci sono poi puzzle un po’ piu complicati da programmare, ove una soluzione (se c’¢) consiste nella
sequenza di transizioni (0 mosse), non nota, che ha portato dallo stato iniziale a quello finale, di
successo, magari gia noto a priori (vale a dire che si sa dove si vuole arrivare, ma non si sa come);
inoltre, potrebbe esservi il rischio di incorrere in “cicli”... In taluni casi, si rivela interessante cercare la
soluzione piu breve, o una delle piu brevi, o addirittura tutte le piu brevi.

128. Vediamo, come esempio, il gioco del 16 inglese (un altro, famoso, € il gioco del 15, che qui
menziono soltanto, invitando chi e interessato a indagare sulle configurazioni piu lunghe da risolvere e
sulla ricerca euristica di una delle soluzioni piu brevi). Qui ¢ riportata 1’illustrazione originale che
accompagnava la presentazione fatta da Sam Loyd ai suoi lettori. Egli — alla pari di Dudeney — aveva
I’abitudine di aggiungere una storiella alla spiegazione. Di questo gioco, che chiamo Fore and Aft (“A
prua e a poppa”, come dire “Avanti e indietro”), scrisse che fu inventato da un marinaio inglese, il quale
trascorse gran parte della vita sull’isola di Staten Island, nella baia di New York, dove ai turisti vendeva
dei giochi da lui stesso intagliati nel legno. In particolare, costui era orgoglioso proprio di questa sua
creazione, che fu portata in Inghilterra e 1a divenne assai popolare col nome di “gioco del sedici inglese”.
In realta, questo gioco — da annoverare fra i tanti che ricordano il solitario classico, alla francese o
all’inglese — pare sia stato pubblicato per la prima volta dall’inglese Walter William Rouse Ball nel
1892, e certo ¢ che fu in auge in tarda eta vittoriana, per cui in Italia divenne noto come “piccolo solitario
vittoriano”.

129. Le pedine nere possono muoversi soltanto verso nord (N) o verso ovest (W), le bianche soltanto
verso sud (S) o verso est (E); non sono permessi movimenti in diagonale. Una pedina puo spostarsi di
una casa, oppure puo scavalcare una pedina di colore opposto, per andare ad occupare la casa libera. Lo
scopo e lo scambio di posti tra le pedine dei due colori.

In virtu di queste regole, durante una “partita” pud venire a crearsi una situazione di blocco, ma non
puo accadere il ripetersi di una stessa posizione: pertanto € inutile controllare se lo stato raggiunto € gia
stato visitato. Poiché in ogni momento c¢’¢ una sola casa libera ¢ poiché non sono permesse mosse in
diagonale, né a ritroso, ne consegue che ogni volta che si deve fare una mossa, non piu di due pedine di
ciascun colore hanno la possibilita di muoversi.

Vi sono davvero tante soluzioni — ma quante saranno? — ovviamente simmetriche a gruppi di quattro, a
seconda che inizi il bianco o il nero, ciascun colore con I’una o con I’altra delle pedine che possono
iniziare.

W. W. Rouse Ball, riportandolo nella sua opera enciclopedica Mathematical Recreations and Essays
del 1892, ne da una soluzione in 51 mosse; nella terza edizione, del 1896, ne da un’altra di 48 mosse.
Ma nella quinta edizione, del 1911, pubblica quella che egli dice trovata da Dudeney nel 1898: essa
consta di sole 46 mosse ed ¢ particolarmente elegante per la sua simmetria.

Soltanto alcuni decenni fa é stato provato che 46 mosse sono necessarie e che esistono piu soluzioni
minime (in 46 mosse); ho scritto un programma che ha stampato tutte le 2476 soluzioni minime che
iniziano con la mossa 1, impiegando circa 11 minuti (su un computer ormai vecchiotto).

Com’é descritta precisamente una soluzione? Senza creare ambiguita, possiamo denotare ciascuna
mossa indicando il numero corrispondente alla casa da cui parte la pedina che si muove. Facciamo
iniziare il nero con la pedina che sta nella casa 1 (sebbene non necessario, in neretto sono evidenziati i
salti). Su ciascuna linea sono scritte 23 mosse: a meta partita la posizione dei due colori é simmetrica.
Se prendiamo le prime 22 mosse, le ribaltiamo e cambiamo i segni, otteniamo le prime 22 della seconda
linea! Anche la distribuzione dei salti sulle due linee & simmetrica.

Siccome, in questo solitario, una posizione non puo ripetersi, ha pure senso chiedersi di quante mosse
siano costituite le soluzioni piu lunghe: la risposta & 58 (e sono 75 quelle che iniziano con 1).

130. E veniamo infine ai giochi tra due avversari, in cui un computer pud essere programmato per
giocare (possibilmente al meglio) contro un umano o contro un altro software.



MasterMind € un notissimo gioco, ma di altra natura. Spesso agli allievi si propone di scrivere un
programma che giochi il ruolo del codificatore. Nella classica versione con sei colori e codice segreto
di quattro colori con possibili ripetizioni, le possibili sequenze sono 6% = 1296. Un ovvio programma
che sostenga invece la parte del solutore potrebbe iniziare con un tentativo scelto a caso tra i 1296;
acquisita la risposta del codificatore, elimina tutti i codici incompatibili con la risposta ricevuta e, tra
quelli rimasti, ne sceglie uno a caso; e cosi via, finché non perviene al codice segreto. Tuttavia, questa
strategia non garantisce la minimizzazione del numero massimo di tentativi!

131. 1l NIM é il piu classico dei giochi con i fiammiferi. Si tratta di un gioco combinatorio imparziale
(nessuna distinzione di “materiale” tra i due giocatori, nessuna possibilita di pareggio), analizzato dal
matematico statunitense Charles L. Bouton all’inizio del *900. Si dispongono dei fiammiferi in diverse
file; il giocatore di turno deve togliere da una fila a sua scelta un numero qualsiasi di fiammiferi, al
minimo uno, al massimo tutti; vince chi toglie 1I’ultimo fiammifero. Per “risolvere” il gioco, si scrivono
in colonna i numeri in binario dei fiammiferi in ciascuna fila e poi si calcola, per ogni colonna di bit, un
bit di parita sugli 1 (cio che corrisponde a fare I’or esclusivo). Se i bit di parita sono tutti 0, non c’¢
mossa che conservi tale proprieta; in caso contrario, almeno una puo portare tutti i bit di parita a 0, e
pertanto chi si trova in quest’ultima situazione vince, poiché perde chi rimane senza fiammiferi (e
dungue con tutti i bit di parita ovviamente a 0). Realizzare un programma che giochi a NIM (magari
lasciando qualche chance all’avversario!) non dovrebbe presentare eccessive difficolta. ..

133. Vi sono giochi “infiniti”: se nessuno dei due avversari commette errori, la partita non termina.
Nel Kayles normale (messi in riga n birilli, ciascun giocatore, a turno, puo buttar gitu un birillo o due
birilli adiacenti; chi butta giu I’ultimo vince) ha la strategia vincente il primo giocatore, per ogni n > 0.
Quello che ho chiamato Babylone-one € un esempio di falso gioco, in cui entrambi i giocatori sono
“ininfluenti”: indipendentemente dalle loro scelte, il numero di mosse e 1’esito finale sono determinati
soltanto dal numero di gettoni posti sul tavolo. Ad ogni mossa, il giocatore di turno deve impilare due
pile di stessa altezza, e se non puo farlo perde.

All’opposto, il gioco ideato da Patrick M. Grundy nel 1939 non ¢ un falso gioco: partendo da una pila
di n gettoni, il giocatore di turno deve spezzare una pila a sua scelta in due pile di diversa altezza, e se
non puo (perché sono rimaste soltanto pile di uno o due gettoni) perde. Per ogni n si puo stabilire quale
dei due avversari abbia la strategia vincente; é stato congetturato che la successione che esprime per
ogni n quale dei due giocatori possa vincere diventi prima o poi periodica, ma ancora non si sa...

137. Il popolare gioco del tris, forse risalente all’ Antico Egitto, ¢ stato oggetto del primo videogame (su
EDSAC, 1952). Si tratta di un gioco “alla pari”: se nessuno dei due commette errori, nessuno vince! In
una variante, proposta dal prolifico Martin Gardner, si aggiunge una casella alla riga orizzontale in
basso, sulla destra, e per vincere su questa riga pit lunga bisognera occupare tutte e quattro le caselle,
mentre altrove basta il tris, anche sull’ulteriore diagonale di tre caselle che viene a crearsi...

138. Ecco altri giochi della stessa classe del tris (finiti, a informazione perfetta, a due competitori che
si alternano a muovere, a somma zero), ma assai piu complessi. Per tutti, in teoria, si puo stabilire quale
si verifica dei tre casi possibili gia previsti nel 1912 dal matematico tedesco Ernst Zermelo, fondatore
della teoria assiomatica degli insiemi: salvo errori, € sempre in grado di vincere chi inizia, oppure chi
risponde, oppure € patta teorica; ma soltanto per alcuni di essi cio & possibile all’atto pratico.

In qual modo puo essere “risolto” un gioco? Un esempio di quella che si dice risoluzione in senso ultra-
debole fu dato nel 1948 da John F. Nash (allora studente a Princeton, futuro premio Nobel per
I’economia nel 1994), con una dimostrazione per assurdo, e non costruttiva, del fatto che a Hex
dev’essere il primo giocatore ad avere una strategia vincente (pur ignorando quale essa sia).

La dama sulla scacchiera tradizionale 8x8 ¢ stata risolta (in senso debole) nel 2007 (vi ha lavorato una
cinquantina di computer per 18 anni!) e si tratta del piu grande gioco per il quale finora sia stato trovato
un risultato di questo tipo: se nessuno fa errori, la partita finira patta. Per fortuna, sapere che la dama é
“alla pari” non togliera comunque il piacere di giocare una partita!

10



Che cosa significa “in senso debole”? E stato determinato il risultato (di paritd) e individuata una
strategia corretta (non perdente) a partire dalla posizione iniziale: per far questo ¢ “bastata” 1’analisi di
circa quarantamila miliardi di posizioni: una parte su 12.5 milioni, rispetto al totale delle possibili
posizioni sulla scacchieral

139. Oltre una decina d’anni fa, a scuola, grazie all’impegno di un mio eccellente allievo, abbiamo
realizzato un programma che gioca ad Awari, un antichissimo gioco africano, tuttora diffuso in gran
parte del mondo, con tantissime varianti. Le regole sono semplici, il gioco affascinante, con forti valenze
rituali e simboliche — si puo dire religiose — oltre che didattiche.

Noi abbiamo seguito la variante studiata, a partire dagli anni 90, da un gruppo di ricercatori olandesi,
che nel 2002 hanno risolto “in senso forte” tale gioco: per ognuno degli stati possibili (qui quelli
essenzialmente differenti sono circa 900 miliardi) hanno trovato la lista delle mosse “giuste” da fare;
tutto quanto e stato poi memorizzato in un database che occupa 778 GB, dopodiché — giunti a questo
punto — la stesura di un programma imbattibile é stata assai semplice!

Come si gioca? Il tavoliere ha, per ciascuna delle due parti, una fila di 6 buche (contenenti all’inizio 4
semi ciascuna) e un “granaio” (che conterra i semi catturati). Il giocatore che deve muovere sceglie una
delle proprie buche, non vuota; preleva tutti i semi che vi sono contenuti e, procedendo in senso
antiorario, li semina a uno a uno nelle buche successive, anche nel campo opposto, saltando poi la buca
originaria se i semi da questa prelevati sono piu di 11: fatta questa operazione, tale buca rimane quindi
sicuramente vuota. Se I’ultimo seme cade in una buca avversaria che contiene 0 2 0 3 semi (compreso
quello appena seminato) questi sono catturati, e cosi di seguito, a ritroso, finché si incontrano buche nel
campo avversario con 2 0 3 semi.

Ovviamente, non e detto che la mossa che porta al massimo risultato immediato sia la migliore: spesso
una tattica greedy conduce alla sconfitta, se I’avversario gioca bene!

Se tutte le buche nel campo del giocatore di turno sono vuote, egli non puo muovere; allora I’avversario
trasferisce nel proprio granaio i semi che sono eventualmente rimasti nel proprio campo, e la partita
finisce. Il punteggio € determinato dalla differenza tra i contenuti dei rispettivi granai.

Questa sarebbe la regola pit semplice per stabilire la fine di una partita; tuttavia, per prolungare il gioco,
nell’Awari qui considerato vige una regola fair (leale): non sono consentite mosse che lasciano
I’avversario senza semi, eccetto nel caso in cui tutte portino inevitabilmente a questa situazione. (Non
€ permesso comungue saltare un turno, cio che invece é previsto in altre varianti.)

Infine, se una stessa posizione si ripete per tre volte, la partita termina: secondo la nostra variante, i semi
rimasti sono divisi esattamente a meta tra i due giocatori, e aggiunti ai rispettivi granai.

Secondo I’approccio piu tradizionale, noi abbiamo seguito I’idea di analizzare tutti gli stati
raggiungibili, a partire dalla posizione attuale, in un certo numero prefissato di mosse: quindi su un
orizzonte necessariamente limitato. Sarebbe opportuno procedere oltre la profondita massima stabilita
qualora lo stato raggiunto non sia quiescente: ad esempio, nell’ Awari, uno stato puo dirsi quiescente se
non vi sono buche con semi esposti a cattura alla mossa successiva.

140. L’idea di base ¢ questa: ciascuno dei due avversari cerchera di minimizzare la massima perdita per
lui possibile, secondo un criterio “condiviso”!

I1 punto delicato ¢ la valutazione degli stati (non finali) nei quali 1’analisi si ferma e non procede oltre...
Nel caso dell’ Awari, abbiamo considerato semplicemente la differenza tra i contenuti dei due granai:
quello del giocatore al quale spetterebbe muovere nello stato raggiunto meno quello dell’avversario. In
generale, la progettazione della funzione di valutazione di una posizione (pur gquiescente) e piuttosto
delicata, poiché si assume implicitamente che ciascuno dei due contendenti giochi al meglio delle
proprie possibilita proprio in base a questa particolare funzione di valutazione.

141. Applicando poi le classiche tecniche di “potatura”, che evitano 1’esplorazione di quelle alternative

che sicuramente non sono migliori di una gia analizzata, il tempo richiesto dall’analisi si puo ridurre
sensibilmente (nel nostro Awari, a profondita 8, e sceso sotto la meta).

11



I1 primo procedimento di potatura, conosciuto come a-p, fu presentato da John McCarthy nell’estate del
1956, durante il primo seminario sull’intelligenza artificiale; tra le altre cose, proprio in quella
circostanza McCarthy suggeri le idee in base alle quali poi progetto il linguaggio LISP.
Un’approssimazione branch-and-bound dell’algoritmo di potatura a-f fu codificata e utilizzata per la
prima volta in un programma per gli scacchi, finito nel 1958, da Allen Newell, Herbert A. Simon (futuro
premio Nobel per ’economia nel 1979) e J. C. (Cliff) Shaw, all’epoca ricercatori presso il Carnegie
Institute of Technology di Pittsburgh, Pennsylvania.

142. Queste tecniche di potatura, insieme ad alcune pit moderne (che sperimentammo con 1’ Awari,
ottenendo ancora maggior efficienza), sono dettagliate (a livello di codice in C++) nel mio libro “Dai
giochi agli algoritmi”, pubblicato nelle Edizioni Kangourou Italia. La seconda edizione (con copertina
viola), riveduta e ampliata nel 2019, potete scaricarla gratuitamente in formato pdf (di 482 pagine):

https://drive.google.com/file/d/1tMIlvuRregMCwwYb-c25DIhJ7FxsPaM8/view?usp=sharing

Nel volume troverete approfondimenti sui temi e problemi menzionati in questa sede e, mi auguro, tanti
altri spunti per stimolare e rendere ancor piu piacevole 1’apprendimento di qualche principio
dell’informatica ai vostri allievi.

143. Piu di un secolo é trascorso dalla costruzione di quello che probabilmente ¢ stato il primo automa
logico interattivo realizzato con successo, sebbene la procedura seguita avesse parecchi limiti: infatti,
non garantisce la vittoria del Bianco in tutte le possibili posizioni di partenza (legali, col tratto al
Bianco); in certi casi, il Bianco si trova bloccato, poiché 1’azione prevista non puo essere compiuta
oppure ¢ illegale, o perde la Torre o giunge si a dare il matto, ma in un numero di mosse maggiore di
50, cio che, secondo le regole, conduce alla patta: in effetti, questa semplice procedura — peraltro
ingegnosamente progettata e realizzata — non € generale e nemmeno ottima, e I’inventore ne era affatto
consapevole.

Non molti anni fa sono stati realizzati approcci radicalmente diversi alla progettazione di giocatori
artificiali, basati su reti neurali “profonde”. Un aspetto chiave — e un po’ inquietante — di questa
tecnologia € che i criteri con cui e condotta una partita non sono direttamente comprensibili, nemmeno
da parte di chi ha progettato la rete neurale: non si puo sapere perché la rete abbia calibrato i suoi pesi
0 parametri, che si contano a milioni, proprio su quei certi valori; non sappiamo come abbia “ragionato”
per giungere a quei risultati, e quindi — in sostanza — I’algoritmo non puo essere descritto, né tantomeno
spiegato...

144. Chiudo in bellezza, spiegando un algoritmo di elaborazione di immagini — piuttosto semplice da
programmare — che ha il fascino di un gioco di prestigio... Col termine photomaton furono chiamate
quelle popolari macchine fotografiche automatiche, che stampano quattro esemplari della stessa
fotografia in formato tessera; apparvero in Francia, per la prima volta, nel 1925. Se i pixel di
un’immagine bidimensionale si ridistribuiscono ad ogni passo come illustrato in figura, si ottengono
quattro figure “simili”, ma non identiche poiché i pixel sono soltanto spostati, non modificati... Se le
dimensioni sono entrambe pari, dopo un numero di passi che dipende funzionalmente da queste
dimensioni, riapparira 1’immagine originale — e, nel frattempo, certi passi potrebbero aver prodotto
effetti sorprendenti!

Se desiderate ulteriori spiegazioni, materiale o suggerimenti, scrivetemi!
Genova, 11 settembre 2023 Lorenzo Repetto

repetto@calvino.ge.it

lorenzo.repetto@calvino.edu.it

12


https://drive.google.com/file/d/1tMllvuRregMCwwYb-c25DlhJ7FxsPaM8/view?usp=sharing
mailto:repetto@calvino.ge.it
mailto:lorenzo.repetto@calvino.edu.it

