
Problemi, soluzioni,

codifiche

Lorenzo Repetto

repetto@calvino.ge.it

mailto:lorenzo.repetto@calvino.ge.it


Come furono descritti gli algoritmi prima del 1945?

❑ Mesopotamia, ~ 40 secoli fa: i più antichi a noi noti.

    Soltanto sequenze di calcoli su particolari dati,

    non la descrizione di una procedura astratta generale.

❑ Grecia, ~ III secolo a.C.: Euclide, Eratostene, …

    Molti algoritmi non banali formulati in astratto, ma

    sempre informalmente, in linguaggio naturale.

❑ Nel corso dei secoli, i matematici hanno sviluppato

▪   notazioni assai precise per descrivere la parte statica,

▪   non altrettanto per la parte dinamica; in particolare:

     invece di   x ← x + 3   sempre   xn+1 = xn + 3



Nel diagramma originale stilato da Ada Byron (1843):

• manca l’idea di array, sicché dev’essere preordinata una (lunga e 

precisa) sequenza di variable-card, per ripetere le operazioni su 

variabili “con indice aumentato di un’unità” di volta in volta;

• non sono formalizzate le istruzioni di salto condizionato, ... 

ma tutto è descritto precisamente!

• è impostato un calcolo di complessità (numero di operazioni 

aritmetiche), ma nulla è detto sui progressivi errori numerici.

Punti di forza delle sue Note :

• capacità di sintesi e di penetrazione nelle problematiche 

epistemologiche;

• la macchina analitica è potenzialmente universale: 

permette qualsiasi computazione (già intuito da Babbage);

• i numeri possono rappresentare entità che non siano 

mere quantità o misure                  calcolo simbolico !



Circa un secolo dopo…

Notazione veramente precisa e completa,

“a livello macchina”, sia in stile funzionale (λ-calcolo di 

Church) sia in stile imperativo (macchine di Turing)

Definizioni di funzione (effettivamente) calcolabile e di 

algoritmo: diversi formalismi, ma stessa nozione!

• calcolo dei combinatori – Schönfinkel e Curry, 1920-1930 

• λ-calcolo – Church, Rosser e Kleene, 1931-1941

• ricorsività generale – Gödel, 1934 (da Herbrand)

• calcolo delle equazioni – Kleene, 1936 (da Gödel)

• macchine (universali) di Turing – 1936

• sistema di produzioni canonico di Post – 1936-1947



“Calcolo delle equazioni”

Definizioni intensionali di funzioni con proprio nome, da n-uple

di naturali ai naturali, applicabili anche ai risultati di (altre) funzioni,

in generale parziali, ricorsive o mutuamente ricorsive.

Esempio: la funzione di Ackermann (1928), ricorsiva totale ma 

non ricorsiva primitiva.

A(0, y) = y + 1

A(x + 1, 0) = A(x, 1)

A(x + 1, y + 1) = A(x, A(x + 1, y))

In ML (1973):

fun A(x, y) =

     if x=0 then y+1

     else if y=0 then A(x-1, 1)

          else A(x-1, A(x, y-1));



Comandi / istruzioni nel Plankalkül: “Lo scopo del Plankalkül è fornire una 

descrizione puramente formale di qualsiasi processo computazionale.”

▪ assegnazione: x + 3    x

  Zuse fu il primo… ed era consapevole di ciò che faceva!

   Ergibt-Zeichen = segno di produzione, con ricevente

       a destra; Rutishauser lo propose per l’ALGOL 58 …

▪ condizionale: una sorta di “guarded command”

▪ varie forme di cicli (anche annidati):                (Bedingt-Zeichen)

▪ a numero di iterazioni precalcolato

▪ oppure no, con “guardie” riprese dalla logica dei predicati

  del prim’ordine (anche con quantificatori), operatore μ …

▪ niente goto (né label), ma possibilità di interrompere una 

sequenza di istruzioni ed eventualmente uscire da un ciclo al 

livello di nesting specificato – quindi il goto non serve!

▪ niente primitive per I/O – dipendenti dalla macchina!



Wiederholungspläne (Zuse, manoscritto originale)

è un’istruzione, equivalente a if_then_ (ma senza else_)

Nota: qui Fin2 è trattata come una variabile…



Ordinare un array con straight insertion sort  (P3.27)

N.B.:  Fin2  e  Fin3

NON  Fin  e  Fin2

perché c’è anche il
livello della guardia
interna!

(Ho aggiunto Fin2, 
altrimenti la 
condizione successiva 
può far riferimento 
all’elemento di posto 
–1, inesistente…)



… Diagrammi per pianificare i programmi …

(H. Goldstine e J. von Neumann, 1947)



… A flow chart to detect an earthquake …

(J. Lee et alii, 2019)



• Condizioni per ottenere un risultato da una procedura di 

calcolo

• Provarne la correttezza …

L’attività di codifica di una procedura di calcolo «has to be 

viewed as a logical problem and one that represents a new 

branch of formal logics.»

(H. H. Goldstine & J. von Neumann, 1947)

«The programmer should make assertions about the various 

states that the machine can reach. The checker has to verify 

that [these assertions] agree with the claims that are made 

for the routine as a whole. Finally the checker has to verify 

that the process comes to an end.»

(A. M. Turing, 1949)



Da una proposta per le ultime classi di una scuola primaria:

[…] L’informatica a scuola spesso si limita all’uso di computer, 

tablet e programmi applicativi. Tuttavia il contributo culturale 

più significativo che ci offre l’informatica è il “pensiero 

computazionale”, ovvero l’insieme dei processi mentali che 

mette in atto un informatico nella sua tipica attività di problem 

solving. Si tratta di competenze trasversali, utili e declinabili in 

tutti gli ambiti disciplinari: formulare i problemi in modo che 

possano essere risolti in maniera automatica da agenti 

autonomi, analizzare e organizzare con logica le informazioni, 

rappresentarle attraverso modelli e astrazioni, automatizzare 

lo svolgimento di compiti tramite sequenze di passi ordinati, 

generalizzare e trasferire processi risolutivi a una grande 

varietà di situazioni diverse. […]
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Primi comandi in LOGO  https://xlogo.inf.ethz.ch/release/latest/
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Poligoni “regolari” e linee “curve”



Nominare programmi, definire uno o più parametri



Alcuni disegni, usando la procedura “poligono”



Una stella a 5 punte e una corolla con 9 petali



Una stella a 6 punte “animata”



Spirali in forma “ricorsiva”



Spirali in forma “iterativa” (equivalente)



Altre spirali …
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Colorare superfici



Alcuni esempi con Scratch  https://scratch.mit.edu/







Estensione:  Snap!    https://snap.berkeley.edu/
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Certi problemini sembrano facili …



• Data una sequenza di interi, anche negativi, calcolare la 

somma della sottosequenza di somma massima; due 

versioni con diverse complessità, una “quadratica” e una 

“lineare”: vedi programmi_Python_2.7.9 > somma_max.py

• Data una sequenza di bit, che rappresenta una partitura 

per tamburello (1 = batti un colpo, 0 = pausa), stabilire se è 

periodica e, in caso affermativo, trovare il periodo: vedi 

programmi_Python_2.7.9 > tamburello.py

• Data una sequenza di N bit (una strada con N lampioni, 1 = 

acceso, 0 = spento), si vuol sapere quanti lampioni bisogna 

accendere affinché ogni sottosequenza di M lampioni ne 

abbia almeno K accesi (1  K  M  N); due versioni con 

diverse complessità: vedi programmi_Python_2.7.9 > 

lampioni_1.py e lampioni_2.py



Qualche problema un po’ più difficile …

• Ogni persona in un insieme di N dà la propria disponibilità 

per un intervallo di giorni [da, a] compresi. Devono essere 

coperti da almeno una persona tutti i giorni da 0 a K – 1, 

impiegando il minor numero di persone: vedi 

programmi_Python_2.7.9 > turni.py

• Data una sequenza di N interi (una fila di luci di diversi 

colori, codificati con i numeri 0, 1, …, C – 1), calcolare la 

lunghezza della sottosequenza più corta che contiene 

almeno una luce di ciascun colore: vedi codifica in C++

nella cartella programmi_Cpp > luci_di_Natale

• Quanti sono gli alberi binari con N nodi, radice compresa, 

che hanno più nodi nel sottoalbero sinistro della radice 

rispetto al destro? Vedi codifica in C++ nella cartella 

programmi_Cpp > alberi_LR



Alcuni programmi nell’ambiente Maple

Nella cartella programmi_Maple sono contenuti quattro file 

commentati (sia i worksheet, sia i file in pdf con i risultati):

1) calcolo di: resto, mcd, fattoriale e numeri di Fibonacci, in 

forma sia ricorsiva sia iterativa; calcolo del mcm;

2) i numeri di Bernoulli;

3) i metodi di bisezione e di Erone per calcolare la radice 

quadrata; la serie di Gregory-Leibniz per approssimare π;

4) il triangolo di Tartaglia; i numeri di Mersenne e il 

problema della fattorizzazione.

Il problema della fattorizzazione (in forma decisionale) è uno 

dei pochi noti che appartengono a NP, ma non si sa se siano 

NP-completi o se appartengano (anche) a P.

Un altro è il problema dell’isomorfismo tra grafi …
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Ancora nell’ambiente Maple …

Nella cartella programmi_Maple trovate anche il file (in pdf) 

Introduzione ai sistemi dinamici non lineari, che sviluppai 

oltre un decennio fa, nell’ambito del Progetto Problem 

Posing & Solving; un tema che potrebbe essere trattato in 

un corso sia di Fisica sia di Matematica, corredato di 

numerosi problemi risolti con Maple, suddiviso in capitoli:

• un semplice sistema caotico

• il modello differenziale

• i sistemi di Lotka-Volterra

• il sistema prede-predatori

• oscillatori

• il circuito di van der Pol

• biforcazioni di Hopf
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Un problema dato alla finale Coppa Student Kangourou 2023

(Il quesito è risolto da programmi_Python_2.7.9 > roditori.py riportato 

anche nella slide seguente.)
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Un altro problema della finale Coppa Student Kangourou 2023

(Il quesito è risolto da programmi_Python_2.7.9 > popolazione.py 

riportato anche nella slide seguente.)
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Partendo dallo scenario di un compito da risolvere

(ovvero da una particolare istanza del problema):

❑ Algoritmi “efficienti” su grafi (pesati / non pesati)

• Minimum Spanning Tree (Borůvka, Kruskal, Prim-

Jarník → Dijkstra per cammini minimi)

• Visite in profondità e in ampiezza …

❑ Problemi “difficili” su grafi (pesati / non pesati)

• Travelling-Salesman Problem (di permutazione)

• Min. Vertex Cover e Max. Independent Vertex Set 

(due problemi di sottoinsieme, complementari) …

❑ Altri problemi “difficili”

• Rectilinear Steiner Tree, Bin-Packing (di partizione), 

Knapsack, Multiprocessor Scheduling …
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→ … Naturalmente, bisogna dimostrare la correttezza

         di questi algoritmi!
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Algoritmo di Kruskal (1956)

Vedi codifica in C++ nella cartella programmi_Cpp > Kruskal   Sembra facile…

ma l’idea giusta inizia col ripartire i punti da collegare in altrettanti insiemi…
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Qual è il cammino più breve da Valle Chiara a Fonte Argento?
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Algoritmo di Dijkstra  (1959)

• la tecnica è “greedy ”: si costruisce un insieme S 

di nodi, iniziando col solo nodo di partenza v0

• ad ogni passo, si aggiunge all’insieme S il nodo 

“più vicino”: tra quelli a distanza di un arco da un 

nodo di S, considerando i costi per raggiungerli a 

partire da v0 e toccando soltanto nodi di S

• dopo n − 1 passi, l’insieme S è costituito da tutti 

gli n nodi, e sono noti i cammini di costo minimo 

da v0 a ciascuno degli altri nodi (raggiungibili)

Vedi codifica in C++ nella cartella programmi_Cpp > Dijkstra 
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Algoritmo di Dijkstra     primo passo



47

Algoritmo di Dijkstra    secondo passo

A Monte Viola si arriva 

anche da Colle Fiorito, 

ma 25 + 20 > 35

Si raggiunge 

pure Bosco Atro

Migliora il tempo per 

arrivare a Punta 

Secca: 25 + 20 < 50
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Algoritmo di Dijkstra    terzo passo
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Algoritmo di Dijkstra    quarto passo



Algoritmo di Dijkstra    quinto passo

Se interessa arrivare a Mulino 

Vecchio, possiamo fermarci qui!
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Algoritmo di Dijkstra    sesto passo
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Algoritmo di Dijkstra    settimo passo

Un solo cammino dal 

nodo di partenza a 

ciascun altro nodo: 

“albero”!
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Algoritmo di Dijkstra: “complessità”

• nel caso peggiore, al crescere del numero n dei 

nodi, il tempo di elaborazione tende ad aumentare 

in modo proporzionale a n 2

• si può migliorare utilizzando strutture di dati 

opportune; comunque è efficiente (e quindi il 

problema è trattabile)

• trovare il cammino “più lungo” tra due nodi, o un 

cammino che tocchi una e una sola volta ciascun 

nodo: per questi problemi non si conoscono (né si 

sa se esistano) algoritmi efficienti in generale!
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Visita in ampiezza
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Backtracking: tutti i percorsi da-a in un di-grafo

Vedi codifica in C++, basata sulla visita in profondità

nella cartella programmi_Cpp > percorsi_alternativi 
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Chiusura transitiva: un problema più semplice 

Vedi codifica in C++ dell’algoritmo di Warshall (1962)

nella cartella programmi_Cpp > chiusura_transitiva
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Suggerimento: poiché il grafo è non orientato, basta costruire un 

albero di visita a partire da un nodo a scelta e verificare se tutti i 

nodi sono stati raggiunti… Questo va fatto dopo aver tolto un arco 

ogni volta.
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Problemi (risolubili) “trattabili”

• Problemi risolubili in tempo polinomiale:

 esiste (ed è noto) almeno un algoritmo risolutivo che

 richiede tempo polinomiale nella lunghezza dell’input

 espressa in bit, e quindi possono essere risolti in modo

 efficiente (sempre entro certi limiti).

Esempi:

• ordinare una sequenza arbitraria di n numeri naturali: 

esistono vari algoritmi che richiedono un tempo d’esecuzione 

della forma an 2 + bn + c, ma anche algoritmi più efficienti …

• trovare il percorso più breve tra ciascuna coppia di nodi in un 

grafo qualsiasi; c’è anche un algoritmo assai compatto, che ha 

complessità cubica: Floyd, 1962, stessa idea di Warshall …
(vedi codifica in C++ nella cartella programmi_Cpp > Floyd)
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Problemi (risolubili) di fatto “intrattabili”

• Problemi intrinsecamente esponenziali:

 qualsiasi algoritmo risolutivo (noto o non noto) richiede

 un tempo che dipende almeno esponenzialmente dalla

 lunghezza dell’input.

Esempi: 

• (piuttosto banali) generare tutti gli anagrammi di una parola o 

elencare tutte le mosse per spostare una torre di Hanoi

• decidere se due espressioni regolari (con l’operatore quadrato) 

generano lo stesso linguaggio (A. R. Meyer e L. J. Stockmeyer, 1972)

• analizzare il gioco del blocco stradale o della dama n × n.

Il confine tra queste due classi di problemi non è affatto netto: è 

una zona misteriosa, dove stanno tanti problemi interessanti …
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Problema di ottimizzazione dello zaino

• Knapsack : è un problema “di sottoinsieme”.

• Dati (tutti interi positivi; quelli di più oggetti uguali

            occorrono altrettante volte nelle rispettive liste):

• Obiettivo:
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• Un esempio:

P =  12

pesi    =  (1, 2, 3, 3, 5, 6)

valori  =  (2, 4, 6, 6, 7, 9)

Quindi n = 6 oggetti, non importa in quale ordine…

● Quale risultato dà una procedura greedy ?

Se ogni volta scegliamo l’oggetto di maggior valore 

possibile, avremo nello zaino gli oggetti 6, 5 e 1:

il peso complessivo sarà 6 + 5 + 1 = 12 (zaino pieno)

e il valore complessivo 9 + 7 + 2 = 18.

Si può fare meglio?
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❖  Piccola parentesi 1: algoritmo greedy

Ad ogni passo, sceglie l’ottimo locale secondo un

certo criterio. Esempio: comporre una somma col

minimo numero di monete. Con quali tagli funziona?

• Con tagli da 25, 10, 5, 1:

48 = 25 + 10 + 10 + 1 + 1 + 1  ottimo

45 = 25 + 10 + 10    ottimo

• Con tagli da 25, 11, 5, 1:

48 = 25 + 11 + 11 + 1   ottimo

45 = 25 + 11 + 5 + 1 + 1 + 1 + 1  non ottimo

• Con tagli da 25, 12, 5, 1:

48 = 25 + 12 + 5 + 5 + 1   non ottimo

45 = 25 + 12 + 5 + 1 + 1 + 1  non ottimo
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Piccola parentesi 1 (continua): con quali tagli funziona? 

Caratterizzare i sistemi monetari per i quali l’algoritmo greedy 

funziona è questione irrisolta, se i tagli sono più di cinque…

Si potrebbero generare, una dopo l’altra, tutte le combinazioni 

che compongono la somma data, scartandole non appena il 

numero di monete occorrenti supera il minimo finora trovato…

Nella cartella programmi_Python_2.7.9 trovate il programma 

monete.py, che calcola in quanti modi si forma un importo, 

disponendo a piacere di monete di vari tagli: provate ad 

adattarlo al nostro problema!

Due sono le funzioni ivi definite; la seconda, ben più efficiente, 

sfrutta l’idea della programmazione dinamica …
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❖  Piccola parentesi 2: programmazione dinamica

     (R. E. Bellman e G. B. Dantzig, 1956-57)

…
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Piccola parentesi 2 (continua): giù dall’albero di Natale!
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Zaino ottimo con la programmazione dinamica

• Idea: se in qualche modo abbiamo già parzialmente 

riempito lo zaino, il maggior profitto lo otterremo 

comunque massimizzando il valore degli oggetti che 

vi possono ancora stare, da scegliere tra i rimanenti.

• Ribaltando la prospettiva: supponiamo che la 

capacità dello zaino aumenti progressivamente da 

1  a  P ,  e ad ogni stadio chiediamoci quale sia il 

massimo valore raggiungibile disponendo soltanto 

del primo oggetto, o dei primi due, o dei primi tre … 

o di tutti gli  n  oggetti.
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• Che cosa dobbiamo fare?

→ Quanto a strutture di dati, ci servirà una matrice M con

    almeno  P  righe  e  n  colonne, oltre a due array  p e  v

    di  n  elementi ciascuno, per i pesi e i valori.

→ È quindi opportuno prevedere anche una riga 0 e una

    colonna 0 nella matrice M …
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• L’algoritmo
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• Riprendiamo l’esempio:

P  =  12,    p  =  (1, 2, 3, 3, 5, 6),    v  =  (2, 4, 6, 6, 7, 9)

Otteniamo la seguente matrice M, con M(12, 6) = 21:

 0 0 0 0 0 0 0

 0 2 2 2 2 2 2

 0 2 4 4 4 4 4

 0 2 6 6 6 6 6

 0 2 6 8 8 8 8

 0 2 6 10 10 10 10

 0 2 6 12 12 12 12

 0 2 6 12 14 14 14

 0 2 6 12 16 16 16

 0 2 6 12 18 18 18

 0 2 6 12 18 18 18

 0 2 6 12 18 19 19

 0 2 6 12 18 21 21
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• Come risalire agli oggetti da mettere nello zaino?

P  =  12,    p  =  (1, 2, 3, 3, 5, 6),    v  =  (2, 4, 6, 6, 7, 9)
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● Partiamo dall’elemento in basso a destra (che contiene il 

valore ottimo) e, restando sull’ultima riga, spostiamoci a 

sinistra, fino a incontrare una variazione di valore:

→ tra le colonne 5 e 4: prendiamo l’oggetto 5 e togliamo il 

suo peso da 12 → 12 – 5 = 7 è il peso massimo rimanente.

● Risaliamo la colonna 4 fino alla riga 7 e poi spostiamoci a 

sinistra, fino a incontrare una variazione di valore:

→ c’è subito, tra le colonne 4 e 3: prendiamo l’oggetto 4 e 

togliamo il suo peso da 7 → 7 – 3 = 4 è il peso residuo.

● Risaliamo la colonna 3 fino alla riga 4 e poi spostiamoci a 

sinistra, fino a incontrare una variazione di valore:

→ c’è subito, tra le colonne 3 e 2: prendiamo l’oggetto 3 e 

togliamo il suo peso da 4 → 4 – 3 = 1 è il peso residuo.

● Risaliamo la colonna 2 fino alla riga 1 e poi spostiamoci a 

sinistra: il valore varia tra le colonne 1 e 0, per cui prendiamo 

l’oggetto 1 e togliamo il suo peso da 1 → 1 – 1 = 0.
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Scegliendo gli oggetti 5, 4, 3 e 1, il valore è massimo 

e, in questo caso, lo zaino è stato riempito…

Tuttavia, vi sono altre soluzioni ugualmente ottime: 

quali? Quella che si trova dipende dall’ordine in cui 

si dispongono inizialmente gli oggetti…

● Scriviamo la seconda parte dell’algoritmo:
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• Un caso particolare: valori uguali ai pesi

Nota: nella formulazione originaria del problema decisionale 

(R. M. Karp, 1972), parlando soltanto di pesi, si chiedeva di 

stabilire se lo zaino può essere riempito esattamente col suo 

peso massimo P, ciò che equivale a chiedere se l’equazione

ha soluzioni in cui ciascuna incognita vale 0 o 1.
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→ problema di Subset-Sum (… si trova in crittografia)

Porsi la stessa domanda per un sistema lineare a 

coefficienti interi non cambia la complessità del 

problema, che viene detto di

programmazione (lineare) intera 0-1

□
• Una variante: il problema con ripetizioni
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Anche per questa variante, si giunge a un algoritmo

che richiede un tempo di esecuzione dell’ordine di

n∙P (per i due cicli annidati), che  non  è polinomiale 

nella dimensione dell’input, costituito da circa

• Complessità rispetto al tempo

bit. Quando l’input è una lista di numeri e il tempo di 

esecuzione è limitato da un polinomio nel maggiore di 

tali numeri e nella lunghezza della lista, si parla di 

algoritmi pseudo-polinomiali.

Il problema dello zaino è NP-hard ma non strongly !
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Il problema della longest common-subsequence

Vedi programmi_Python_2.7.9 > lcs_fb.py (questo) e lcs_pd.py (il successivo)



Una soluzione più efficiente per il problema della lcs



84



85

Il problema del commesso viaggiatore (TSP)

4 tour (cicli hamiltoniani) possibili:

[1, 2, 5, 6, 3, 4, 1]  con costo 34;

[1, 4, 3, 2, 5, 6, 1]  con costo 34;

[1, 2, 5, 6, 4, 3, 1]  con costo 35;

[1, 3, 2, 5, 6, 4, 1]  con costo 42.

Uno dei primi due indifferentemente  

(o il suo “rovescio”) costituisce la 

soluzione di questa istanza del 

problema.

Non si sa se sia intrinsecamente esponenziale, ma finora non 

si è trovato alcun algoritmo efficiente per risolverlo in generale! 
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•  In generale, nessun algoritmo di approssimazione,

   ma algoritmi spesso praticabili

     1954:  Dantzig, Fulkerson e Johnson, su 42 città degli

      USA: programmazione lineare (Dantzig, 1947)

     1962:  Held e Karp:  progr. dinamica  (Bellman, 1957)

      miglior tempo di esecuzione nel caso peggiore:

      O(n 2 ∙ 2 n), decisamente meglio di O(n!),

      ma anche lo spazio cresce esponenzialmente con n

 1963:  Little et al.: branch-and-bound (Land e Doig, 1960)

•  Casi particolari

     TSP metrico:    C(i, j)  ≤  C(i, k) + C(k, j)     i, j, k

      algoritmi di approssimazione (con fattori 2, 3/2)

     TSP euclideo: i nodi sono punti del piano, i costi le distanze

      algoritmo esatto in tempo sub-esponenziale



87

TSP: un esempio con grafo completo, metrico (e simmetrico)

Tour ottimo:

[1, 2, 5, 3, 4, 1]   con costo  39

(In questo piccolo esempio, funziona

persino l’algoritmo greedy, ammesso

che il nodo di partenza sia 2, 3 o 5 …)

I tanti algoritmi studiati per il TSP 

“funzionano bene” nella maggior 

parte delle usuali applicazioni …

I “casi peggiori” non sono poi

così frequenti nella realtà!

Si vedano i più recenti successi al sito  http://www.tsp.gatech.edu/ 

http://www.tsp.gatech.edu/


TSP: l’algoritmo più semplice (anche su grafi orientati)
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Dove installare le torrette di avvistamento?
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Problema di minima copertura per nodi

• Minimum Vertex Cover : problema “di sottoinsieme”.

• Dati:

un grafo semplice, non orientato, non pesato, privo di cappi,

connesso → può essere rappresentato da una lista di coppie 

(u, v ) con u < v , denotando gli n nodi con i numeri da 1 a n.

• Obiettivo:

determinare un insieme di nodi di cardinalità minima tale che 

ogni arco del grafo abbia in tale insieme almeno uno dei due 

nodi estremi.
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• Un primo algoritmo greedy

Idea: per costruire l’insieme copertura X (inizialmente vuoto), 

ad ogni passo scegliamo un nodo v di grado massimo, 

aggiungiamo v a X, e togliamo dal grafo sia v sia gli archi 

che hanno un estremo in v (e anche gli eventuali nodi che 

rimangono isolati) …

Al primo passo abbiamo 

due alternative: o C o H 

(con 4 archi incidenti).

Scegliamo H …
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Al terzo passo restano 

due alternative: D e I.

…

Al secondo passo, i nodi 

di grado massimo (3) 

sono quattro: K, C, D, I. 

Scegliamo K …
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Partendo con H, qualunque successiva scelta, a parità di 

grado massimo, porta a una delle due coperture minime.

Ma scegliendo inizialmente C e poi B (di grado 3)…

→ Non sempre funziona, anzi non è nemmeno un algoritmo 

di approssimazione con fattore costante: nei casi pessimi, il 

rapporto (num. nodi scelti / num. nodi ottimi) tende a crescere 

(in modo logaritmico) all’aumentare del num. di nodi del grafo.
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• Un secondo algoritmo greedy

Idea: per ogni arco, almeno uno dei due nodi estremi deve 

stare in una copertura minima. Quindi, per costruire l’insieme 

X, ad ogni passo scegliamo (a caso) un arco, diciamo quello 

tra i due nodi u e v, aggiungiamo a X sia u sia v, e togliamo 

dal grafo u, v e ogni arco incidente su u o su v …

In questo esempio, 

nessuna scelta porta a 

una soluzione ottima…

e se siamo sfortunati 

prendiamo tutti i nodi!
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In generale, nel caso peggiore, la copertura generata è 

grande il doppio della minima: è dunque un algoritmo di 

approssimazione con fattore costante 2.

Ad esempio, nel caso di  K n,n  sono presi tutti i 2n nodi, 

mentre le due coperture minime ne contengono n.

Con n = 3:

Nota: si tenga presente che su qualsiasi grafo bipartito

il problema è risolubile (esattamente) in modo efficiente.

□
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● Abbinare i due criteri, scegliendo un arco non a caso, ma 

con la massima somma dei gradi dei due nodi estremi?

Nel caso di  K n,n  non vi sarebbe alcun beneficio!

● Idea per trovare una soluzione ottima: modifichiamo il 

secondo algoritmo greedy, calcolando anche che cosa si 

ottiene aggiungendo a X o soltanto u o soltanto v,

tenendo presente che, quando si aggiunge uno solo dei 

due, si devono per forza aggiungere nel contempo anche 

tutti i nodi adiacenti all’altro.

Ad esempio, 

scegliendo H ed 

escludendo C,

è necessario 

includere D, A, K.
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Un algoritmo per ottenere una soluzione ottima

• Se G è privo di archi, allora restituisce l’insieme vuoto. Fine.

• Altrimenti, sia (u, v ) un arco di G, arbitrariamente scelto;

  ricorsivamente, risolve tre problemi (possibilmente in parallelo):

1.  X ← { w | (w, u ) è un arco di G } e sia G1 il grafo che si ottiene da 

G togliendovi i nodi in X e gli archi su di essi incidenti; sia X1 la 

soluzione trovata quando è dato G1; infine, X1 ← X1 U X.

2.  X ← { w | (w, v ) è un arco di G } e sia G2 il grafo che si ottiene da 

G togliendovi i nodi in X e gli archi su di essi incidenti; sia X2 la 

soluzione trovata quando è dato G2; infine, X2 ← X2 U X.

3.  Sia G3 il grafo che si ottiene da G togliendovi i nodi u e v e gli 

archi su di essi incidenti; sia X3 la soluzione trovata quando è dato 

G3; infine, X3 ← X3 U { u, v }.

• Restituisce l’insieme di cardinalità minore tra X1, X2 e X3. Fine.
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Si dimostra che, se k è il numero di nodi della minima 

copertura, allora la profondità a cui giunge l’algoritmo 

ora descritto è, al più, k → la complessità rispetto al 

tempo presenta un fattore 3k.

• Complessità rispetto al tempo

In effetti, il problema è NP-hard.

● È un caso particolare di minima copertura di un 

insieme (Minimum Set Cover ): basta considerare, per 

ogni nodo, l’insieme degli archi su di esso incidenti e, 

come “universo”, l’insieme di tutti gli archi del grafo.

Minimum Set Cover è equivalente al minimo insieme 

dominante (Minimum Dominating Set ).
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• Come ricondurre efficientemente MDS a MSC?

Per ogni nodo v, consideriamo l’insieme costituito da v e tutti 

i nodi adiacenti a v …

{ A, C, K }      { B, D, H, I }

{ C, A, D, H, K }   { D, B, C, E }

{ E, D, I }      { F, H, I }

{ G, H, K }      { H, B, C, F, G }

{ I, B, E, F }      { K, A, C, G }

Qui ci sono ben 8 coperture di soli 

tre sottoinsiemi (2 sono evidenziate 

in rosso e in verde, rispettivamente).

Nota: nessuna copertura è “esatta”.

Provate a ricondurre Min. Set Cover a Min. Dominating Set.



100

“Complementare”: massimo insieme indipendente

Trovare un insieme di nodi di cardinalità massima 

che, a due a due, non sono collegati da un arco.

Se X è un insieme di nodi, sono equivalenti:

• X è un insieme indipendente

• ogni arco incide su al più un nodo  X

• ogni arco incide su almeno un nodo  X

• il complemento di X è una copertura per nodi

→ un massimo insieme indipendente è 

complemento di una minima copertura per nodi.
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Considerando poi il grafo complementare …

Un insieme indipendente è costituito dai nodi di un 

sottografo completo (clique) nel grafo complementare.

Minimum  Maximum  Maximum Clique

Vertex Cover  Independent  (nel grafo

   Vertex Set  complementare)
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Algoritmi esatti

Se X è un massimo insieme indipendente, allora, 

per ogni nodo v del grafo, delle due l’una: o v

o almeno uno dei suoi adiacenti appartiene a X …

→ per tutti i citati problemi “difficili” sui grafi, si può 

pensare di risolvere, ricorsivamente e possibilmente 

in parallelo, due o più sottoproblemi di dimensione 

ridotta, e poi confezionare una soluzione esatta 

utilizzando una di quelle dei sottoproblemi che 

presenti determinate caratteristiche

→ tuttavia, il tempo cresce esponenzialmente col 

numero di nodi …
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❑ Puzzle semplici da programmare (con backtracking)

• Una soluzione, se c’è, è tutta contenuta nello “stato finale”,

   non nella sequenza di mosse per raggiungerlo.

• disegno di un giro di cavallo (aperto o chiuso) su scacchiera

  n × n o m × n, oppure di un percorso per uscire da un labirinto

• Per evitare di incorrere in cicli, se c’è questo pericolo, basta

   lasciare nello stato corrente una traccia del “percorso” fatto

   (che alla fine indicherà la soluzione trovata).

Esempi (trovare una soluzione, se c’è, oppure tutte …):

• completamento di uno schema di Sudoku (anche come

  istanza di Exact Cover Set o, in parte, con tecniche ad hoc)

• puzzle con tessere a incastro (ad es. polimini …)



Uno schema di Sudoku assai difficile

“The Sudoku Susser” 

qui si arrende, e lo 

risolve soltanto con la 

“forza bruta”!

• Intersezione tra 

sesto riquadro e C7: 

il numero 3 non 

appare altrove in C7

e quindi 3 si può 

cancellare dalle altre 

caselle del sesto 

riquadro (R4C9, R5C9 

e R6C9) … Ma poi?





• Come dice Jean-Paul Delahaye, questo procedimento, a mano, 

“non è praticabile, perché richiederebbe una pazienza sovrumana”.

Almeno nell’ambito del Sudoku tradizionale, “il metodo più efficiente 

per una macchina è il più faticoso per un essere umano”.



Exact cover problem

• Problema di “esatta copertura” di un insieme (strongly NP-hard):

   un esempio.
“Se possibile, scegliere degli insiemi tra 

questi otto, in modo che sia preso una e 

una sola volta ciascun elemento di S.”

S   = 

1   2   3   4   5

a      1   0   1   0   0

b      1   0   0   1   1

c      0   1   1   0   1

d      0   1   0   1   0

e      0   1   0   0   1

f       0   0   1   1   0

g      0   0   0   1   1

h      0   0   0   0   1



Sudoku come exact cover problem …

• Un puzzle di Sudoku può ricondursi a un’istanza di tale problema.

Ad esempio, nel caso 4 x 4:

… in R3C4 può stare il 2; se lo fissiamo:

• tale casella non è più occupabile,

• nella terza riga c’è il 2,

• nella quarta colonna c’è il 2,

• nel quarto riquadro c’è il 2.

Quante righe ha questa matrice?



• Nel caso 4 x 4  (k2 x k2, con k = 2):

• In generale: matrice di bit, con 4·k4 colonne e k6 – (k2 – 1)·n righe, 

se n sono i numeri scritti nello schema iniziale;

ciascuna riga contiene comunque quattro 1.

Nel Sudoku classico, k = 3; ma risolvere Sudoku (k) è NP-hard …

• Problema: determinare un sottoinsieme di k4 righe che presentino 

esattamente un 1 in ciascuna colonna.

Matrice di bit, con 64 righe (quindi quadrata, ma è un caso!) …

Ogni numero fissato nello schema iniziale esclude tuttavia 3 righe!



… e metodi per risolverlo

• Knuth: Algorithm X per exact cover problem, basato su back-

tracking e realizzato con una tecnica particolare (dancing links), 

è piuttosto efficiente per istanze di ragionevole dimensione.

• Realizzato in Python (ma usando sets anziché liste bidirezionali 

circolari) e applicato al Sudoku 9 x 9, richiede qualche centesimo 

di secondo, al più alcuni secondi per i puzzle più difficili.

Donald E. Knuth, Stanford University, 2000: “Dancing Links”

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Ali Assaf, 2013: “Algorithm X in 30 lines!”

http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html
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• In altri interessanti articoli, Algorithm X è spiegato, realizzato e 

applicato a diversi rompicapi: pentamini e loro varianti (Kanoodle), 

quadrati latini, Sudoku e creazione di nuovi schemi iniziali …

Peter Norvig, 2011: “Solving every Sudoku puzzle”

http://www.norvig.com/sudoku.html

Andrzej Kapanowski, “Python for Education: The Exact Cover Problem”, 

The Python Papers 6, 2 (2011)

http://ojs.pythonpapers.org/index.php/tpp/article/view/227

David Austin, AMS, 2015: “Puzzling Over Exact Cover Problems”

http://www.ams.org/samplings/feature-column/fcarc-kanoodle

Team # 3140, “The Application of Exact Cover to the Creating of Sudoku Puzzle”

http://www.math.utah.edu/~yzhang/teaching/1030/Sudoku.pdf

• Per non perdere lo spirito del gioco, si possono combinare 

backtracking e strategie logiche elementari, facilmente calcolabili:

l’efficiente programma di Norvig, scritto in Python, è basato su

due funzioni mutuamente ricorsive.
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Un programma semplice per costruire schemi



Un puzzle con i dodici pentamini e un tetramino

… ma bicolori! Quante mai saranno le soluzioni?

Henry Ernest Dudeney, “74. The broken chessboard”, in “The Canterbury 

Puzzles”, London: William Heinemann (1907), pp. 90-92, 174-175
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I dodici pentamini e le loro 63 diverse posizioni

Sei pentamini devono essere colorati su entrambe le facce!
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Puzzle risolto da uno dei primi programmi con backtracking

Dana S. Scott, “Programming a combinatorial puzzle”, Technical Report No. 1 

(1958), New Jersey: Department of Electrical Engineering, Princeton University

(Il programma fu realizzato con l’aiuto di Hale F. Trotter.)

Le soluzioni diverse sono 65, 

trovate dal programma di Scott e 

Trotter in circa 3.5 ore:

19 con X centrato in (2, 3);

20 con X centrato in (2, 4);

26 con X centrato in (3, 3) e

     P non ribaltato (per evitare di

     contare due volte le soluzioni

     simmetriche rispetto alla

     direzione NW-SE).
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Per ciascuno di questi tre casi:

• ognuno degli altri 11 pezzi deve essere 

collocato una e una sola volta,

• ognuna delle 55 caselle rimaste libere deve 

essere occupata da uno e uno solo di essi.



• Tre distinte istanze del problema 

di “esatta copertura” di un insieme

• Struttura dei dati:

una matrice di bit con 66 colonne:

     11 i pezzi (collocato X) e

     55 le caselle rimanenti;

una riga (con esattamente sei 1) 

per ogni collocazione ammissibile 

di ciascuno degli 11 pezzi sulla 

scacchiera “bucata”

• Sia ciascun pezzo, sia ciascuna casella devono essere 

presi una e una sola volta, e dunque ad ogni sottoinsieme 

costituito da 11 righe, che presenti esattamente un 1 in 

ciascuna colonna, corrisponde una soluzione.
117



Se qui si aggiunge il tetramino 

quadrato al centro, NON si ottiene 

una soluzione del puzzle di 

Dudeney, anche potendo ribaltare 

i pezzi della scacchiera; infatti …

D’altronde, Dudeney NON richiede che il tetramino quadrato 

sia al centro − e nella sua soluzione non lo è!

Generalizzando, il problema con i dodici pentamini in tinta unita 

e il tetramino quadrato in una qualsiasi collocazione

ammette 16146 soluzioni diverse nel quadrato 8 x 8;

si veda: Donald E. Knuth, “Dancing Links”, 2000
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
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Altri puzzle “onerosi”: comporre rettangoli con i 12 pentamini

Rettangolo 6 x 10

Colin B. Haselgrove, Jenifer Haselgrove, “A computer program for pentominoes”, 

Eureka 23, 2 (1960), Cambridge, England: The Archimedeans, pp. 16-18

2339 diverse soluzioni, 

trovate dal programma 

di Fletcher in circa 10 

minuti!

John G. Fletcher, “A program to solve the pentomino problem by the recursive 

use of macros”, Communications of the ACM 8 (1965), pp. 621-623

http://www.cs.virginia.edu/~skg5n/fletcher.pdf

http://www.cs.virginia.edu/~skg5n/fletcher.pdf


Rettangolo 5 x 12

1010 soluzioni

Rettangolo 4 x 15

368 soluzioni

Rettangolo 3 x 20     Soltanto 2 soluzioni: qual è l’altra?



Comporre un quadrato con 45 pentamini Y

Una singola soluzione fu trovata da Jenifer Haselgrove: “Packing a square 

with Y-pentominoes”, Journal of Recreational Mathematics 7 (1974), p. 229.

La lista di tutte le 212 soluzioni è di Donald E. Knuth (“Dancing Links”, 2000)

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz


Con ognuno dei 12 pentamini si può realizzare una 

tassellatura periodica del piano …

Tassellatura periodica:

si ripete lungo due

direzioni indipendenti

→ si può individuare un

parallelogrammo periodico
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Uscita dal labirinto (se c’è): la prima o una migliore

Cambiando l’ordine delle quattro direzioni, la soluzione trovata 

può essere diversa.

Versione ottima: si provano tutte per ottenere una delle più brevi.

Vedi codifiche in C++ nella cartella programmi_Cpp > labirinto
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Tante variazioni sul tema del labirinto …
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❑ Puzzle un po’ più complicati …

• Una soluzione, se c’è, consiste nella sequenza di mosse che

  ha portato a uno stato finale, magari già noto, ma dal quale

  non può essere dedotta.

• Talvolta non si rischia di cadere in cicli (ad es. se le pedine

  non possono retrocedere o se ne è tolta una ad ogni mossa)

• … ma spesso invece occorre mantenere una “lista” degli stati

  toccati lungo il percorso fatto …

• Volendo poi trovare tutte le soluzioni più brevi, oltre a forzare

  il backtracking, occorre mantenere un “insieme di soluzioni”

  (ciascuna soluzione è una “lista di stati”):

  - quando è trovata una soluzione di pari lunghezza, è aggiunta

    alle altre;

  - se è trovata una soluzione più breve, rimpiazza tutte le altre.
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A prua e a poppa

W. W. Rouse Ball (1892), Sam Loyd (1914)
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Soluzione in 46 mosse, particolarmente elegante per la sua simmetria, 

trovata da H. E. Dudeney nel 1898:

In 46 mosse, numero minimo, ve ne sono altre 2475 che iniziano con 1. 

(Le 75 soluzioni più lunghe che iniziano con 1 richiedono 58 mosse.)
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❑ Giochi per due …

• Come “risolvere” un gioco tra due avversari 

(sufficientemente semplice, ad esempio il tris 

o una sua variante, vedi M. Gardner)

• Come realizzare un gioco tra due avversari 

fermando l’analisi a una certa profondità

• Come determinare quale dei due avversari ha 

la strategia vincente in un gioco combinatorio 

imparziale (di vario genere: NIM, il gioco di 

Euclide, Babylone …)

• Giochi di altro tipo, ad esempio Master Mind : 

come programmare il ruolo di solutore …
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NIM (Charles L. Bouton, 1901)
• A turno, ciascuno dei due giocatori prende quanti fiammiferi 

vuole (almeno uno) da una sola delle file in cui sono ripartiti.

• Vince chi prende per ultimo.

Scriviamo in binario il numero di fiammiferi in ciascuna fila e 

calcoliamo l’even parity bit per ogni colonna di cifre binarie:

  1 0 0 0

  1 0 0 1

  1 1 0 1
   ________________ 

  1 1 0 0

Per vincere, bisogna ridurre a 0 tutti i bit di parità …
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• togliere 4 fiammiferi dalla prima fila, oppure

• togliere 4 fiammiferi dalla seconda fila, oppure

• togliere 12 fiammiferi dalla terza fila.

  0 1 0 0

  1 0 0 1

  1 1 0 1
   ________________ 

  0 0 0 0

Se nella prima fila vi fossero stati 6 fiammiferi anziché 8, 
allora una soltanto sarebbe stata la mossa giusta: quale?

Qui chi gioca ha la possibilità di vincere; tre le mosse “giuste”:

  1 0 0 0

  0 1 0 1

  1 1 0 1
   ________________ 

  0 0 0 0

  1 0 0 0

  1 0 0 1

  0 0 0 1
   ________________ 

  0 0 0 0
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13 = 8 + 4 + 1 = 11012  →  vince il secondo (idem con 12)

→ tolto l’ultimo bit, se i bit 1 sono pari vince il secondo,

    altrimenti vince il primo, comunque muovano: “ininfluenti”!

→ sequenza del vincitore non periodica (Prouhet-Thue-Morse)

… da non confondere col “gioco di Grundy” (1939).

Attenzione ai giochi …

• infiniti: Pong Hau K’i, Picaria … 

• in cui lo stesso giocatore può sempre vincere: Kayles …
• in cui entrambi i giocatori sono “dummy”: Babylone-one …
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Un gioco infinito: Pong Hau K’i

• A turno, ciascun 

giocatore sposta una 

delle pedine del proprio 

colore lungo un lato, 

sino al vertice libero.

• Vince chi riesce a 

impedire all’avversario 
qualsiasi mossa.
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• Tuttavia, se nessuno 

commette errori, la 

partita non termina:

chiunque inizi, nessuno 

dei due giocatori ha 

modo di forzare il 
blocco dell’avversario!

Supponiamo che inizi il Bianco e che si giunga allo stato qui 
sotto raffigurato, con mossa al Nero: allora il Nero vince!
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Qualche esempio, dove i due giocatori collocano a turno le 

proprie pedine, prima di muoverle, e lo scopo è fare un tris:

• Tapatan / Achi con 3 / 4 pedine a testa sul tavoliere a sin.

  Ha una strategia vincente il primo giocatore.

  Achi presenta interessanti varianti…

Sono tantissimi i giochi con pedine su tavolieri…

• Picaria con 3 pedine a testa sul tavoliere a destra
 Nessuno dei due giocatori può forzare la vittoria:

  è un gioco infinito!
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Giochi a due, determinati, a somma 0: il tris
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• Tris: 765 stati (modulo simmetrie) di cui 138 finali,
         26830 partite (differenti sequenze di stati)

Alcuni giochi risolti (a favore della parità)

• Awari: circa 900 miliardi di stati (2002)

• Dama 8×8: circa  5 ∙ 10 20  stati (2007)

• Tela classica: circa 8 miliardi di stati (1995)

Alcuni giochi che mai saranno risolti

• Scacchi: numero di stati stimato con 47 cifre decimali

• Shōgi: numero di stati stimato con 71 cifre decimali

• Go 19×19: numero di stati stimato con 171 cifre decimali
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Awari

Stato del gioco dopo Sud 2:

… e Sud guadagna 7 semi.

Risolto in senso forte: per ognuno degli stati (essenzialmente 

diversi) è stata trovata la lista delle mosse “giuste” da fare!
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Come realizzare un programma che giochi bene

• Ricordare le varianti principali!

• Minimizzare la massima perdita possibile (su un orizzonte)
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Potatura alpha-beta (J. McCarthy, 1956)

• Applicata agli scacchi da Newell, Simon e Shaw (CIT, 1958).

Awari a profondità 8: risparmio di tempo > 50%
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• Minimal Window Principal Variation Search:
 T. A. Marsland e M. Campbell (1982-85)

Miglioramenti

• Nega-Scout: A. Reinefeld (1983-89)

Awari a profondità 14: risparmio di tempo > 15% vs alpha-beta

• L’efficienza aumenta notevolmente se le mosse lecite sono
  almeno una ventina e sono ordinate in una lista best-first.

• Iterative deepening: ordinamento best-first a ciascun livello
  di profondità, prima di passare al livello successivo.

• Transposition table: per evitare di analizzare più volte uno
  stesso stato del gioco.



L. Torres y Quevedo, El segundo ajedrecista, 1920  (Politecnico di Madrid, foto dell’autore) 
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Photomaton (J.-P. Delahaye e P. Mathieu, 1997)

Se il formato dell’immagine è 2m × 2n pixel,

e p1 = il più piccolo intero tale che 2m – 1 divide 2^p1 – 1

e p2 = il più piccolo intero tale che  2n – 1 divide 2^p2 – 1

allora l’immagine iniziale riappare dopo mcm ( p1, p2) passi.
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• L’immagine del gatto è di formato 350 × 512 pixel.

• Il più piccolo intero p1 tale che 349 divide 2^p1 – 1 è 348 = 22 * 3 * 29;

• il più piccolo intero p2 tale che 511 divide 2^p2 – 1 è 9 = 32.

• Dunque, l’immagine del gatto riapparirà dopo 1044 passi…

dopo un passo…       dopo due… 
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Tuttavia, alcuni passi intermedi danno curiosi risultati; ad esempio:

• dopo 488 passi l’effetto è quello di vedere 5 (!) x 4 gatti “ribaltati”…

dopo 33 passi…        dopo 34…                 dopo 488… 
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• dopo 522 passi (la metà di 1044: ma sarà sempre così?) l’immagine

  originale riappare perfettamente ribaltata lungo l’asse verticale;

• infine, dall’immagine del passo 1043, dove la testa del gatto s’intravede

  ingrandita, si ritorna in un solo passo all’immagine nitida di partenza!

dopo 522 passi…     dopo 1043…             dopo 1044 
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