
Problemi, soluzioni,

codifiche

Lorenzo Repetto

repetto@calvino.ge.it

mailto:lorenzo.repetto@calvino.ge.it

Come furono descritti gli algoritmi prima del 1945?

❑ Mesopotamia, ~ 40 secoli fa: i più antichi a noi noti.

 Soltanto sequenze di calcoli su particolari dati,

 non la descrizione di una procedura astratta generale.

❑ Grecia, ~ III secolo a.C.: Euclide, Eratostene, …

 Molti algoritmi non banali formulati in astratto, ma

 sempre informalmente, in linguaggio naturale.

❑ Nel corso dei secoli, i matematici hanno sviluppato

▪ notazioni assai precise per descrivere la parte statica,

▪ non altrettanto per la parte dinamica; in particolare:

 invece di x ← x + 3 sempre xn+1 = xn + 3

Nel diagramma originale stilato da Ada Byron (1843):

• manca l’idea di array, sicché dev’essere preordinata una (lunga e

precisa) sequenza di variable-card, per ripetere le operazioni su

variabili “con indice aumentato di un’unità” di volta in volta;

• non sono formalizzate le istruzioni di salto condizionato, ...

ma tutto è descritto precisamente!

• è impostato un calcolo di complessità (numero di operazioni

aritmetiche), ma nulla è detto sui progressivi errori numerici.

Punti di forza delle sue Note :

• capacità di sintesi e di penetrazione nelle problematiche

epistemologiche;

• la macchina analitica è potenzialmente universale:

permette qualsiasi computazione (già intuito da Babbage);

• i numeri possono rappresentare entità che non siano

mere quantità o misure calcolo simbolico !

Circa un secolo dopo…

Notazione veramente precisa e completa,

“a livello macchina”, sia in stile funzionale (λ-calcolo di

Church) sia in stile imperativo (macchine di Turing)

Definizioni di funzione (effettivamente) calcolabile e di

algoritmo: diversi formalismi, ma stessa nozione!

• calcolo dei combinatori – Schönfinkel e Curry, 1920-1930

• λ-calcolo – Church, Rosser e Kleene, 1931-1941

• ricorsività generale – Gödel, 1934 (da Herbrand)

• calcolo delle equazioni – Kleene, 1936 (da Gödel)

• macchine (universali) di Turing – 1936

• sistema di produzioni canonico di Post – 1936-1947

“Calcolo delle equazioni”

Definizioni intensionali di funzioni con proprio nome, da n-uple

di naturali ai naturali, applicabili anche ai risultati di (altre) funzioni,

in generale parziali, ricorsive o mutuamente ricorsive.

Esempio: la funzione di Ackermann (1928), ricorsiva totale ma

non ricorsiva primitiva.

A(0, y) = y + 1

A(x + 1, 0) = A(x, 1)

A(x + 1, y + 1) = A(x, A(x + 1, y))

In ML (1973):

fun A(x, y) =

 if x=0 then y+1

 else if y=0 then A(x-1, 1)

 else A(x-1, A(x, y-1));

Comandi / istruzioni nel Plankalkül: “Lo scopo del Plankalkül è fornire una

descrizione puramente formale di qualsiasi processo computazionale.”

▪ assegnazione: x + 3  x

 Zuse fu il primo… ed era consapevole di ciò che faceva!

  Ergibt-Zeichen = segno di produzione, con ricevente

 a destra; Rutishauser lo propose per l’ALGOL 58 …

▪ condizionale: una sorta di “guarded command”

▪ varie forme di cicli (anche annidati): (Bedingt-Zeichen)

▪ a numero di iterazioni precalcolato

▪ oppure no, con “guardie” riprese dalla logica dei predicati

 del prim’ordine (anche con quantificatori), operatore μ …

▪ niente goto (né label), ma possibilità di interrompere una

sequenza di istruzioni ed eventualmente uscire da un ciclo al

livello di nesting specificato – quindi il goto non serve!

▪ niente primitive per I/O – dipendenti dalla macchina!

Wiederholungspläne (Zuse, manoscritto originale)

è un’istruzione, equivalente a if_then_ (ma senza else_)

Nota: qui Fin2 è trattata come una variabile…

Ordinare un array con straight insertion sort (P3.27)

N.B.: Fin2 e Fin3

NON Fin e Fin2

perché c’è anche il
livello della guardia
interna!

(Ho aggiunto Fin2,
altrimenti la
condizione successiva
può far riferimento
all’elemento di posto
–1, inesistente…)

… Diagrammi per pianificare i programmi …

(H. Goldstine e J. von Neumann, 1947)

… A flow chart to detect an earthquake …

(J. Lee et alii, 2019)

• Condizioni per ottenere un risultato da una procedura di

calcolo

• Provarne la correttezza …

L’attività di codifica di una procedura di calcolo «has to be

viewed as a logical problem and one that represents a new

branch of formal logics.»

(H. H. Goldstine & J. von Neumann, 1947)

«The programmer should make assertions about the various

states that the machine can reach. The checker has to verify

that [these assertions] agree with the claims that are made

for the routine as a whole. Finally the checker has to verify

that the process comes to an end.»

(A. M. Turing, 1949)

Da una proposta per le ultime classi di una scuola primaria:

[…] L’informatica a scuola spesso si limita all’uso di computer,

tablet e programmi applicativi. Tuttavia il contributo culturale

più significativo che ci offre l’informatica è il “pensiero

computazionale”, ovvero l’insieme dei processi mentali che

mette in atto un informatico nella sua tipica attività di problem

solving. Si tratta di competenze trasversali, utili e declinabili in

tutti gli ambiti disciplinari: formulare i problemi in modo che

possano essere risolti in maniera automatica da agenti

autonomi, analizzare e organizzare con logica le informazioni,

rappresentarle attraverso modelli e astrazioni, automatizzare

lo svolgimento di compiti tramite sequenze di passi ordinati,

generalizzare e trasferire processi risolutivi a una grande

varietà di situazioni diverse. […]

13

Primi comandi in LOGO https://xlogo.inf.ethz.ch/release/latest/

14

Poligoni “regolari” e linee “curve”

Nominare programmi, definire uno o più parametri

Alcuni disegni, usando la procedura “poligono”

Una stella a 5 punte e una corolla con 9 petali

Una stella a 6 punte “animata”

Spirali in forma “ricorsiva”

Spirali in forma “iterativa” (equivalente)

Altre spirali …

22

Colorare superfici

Alcuni esempi con Scratch https://scratch.mit.edu/

Estensione: Snap! https://snap.berkeley.edu/

27

Certi problemini sembrano facili …

• Data una sequenza di interi, anche negativi, calcolare la

somma della sottosequenza di somma massima; due

versioni con diverse complessità, una “quadratica” e una

“lineare”: vedi programmi_Python_2.7.9 > somma_max.py

• Data una sequenza di bit, che rappresenta una partitura

per tamburello (1 = batti un colpo, 0 = pausa), stabilire se è

periodica e, in caso affermativo, trovare il periodo: vedi

programmi_Python_2.7.9 > tamburello.py

• Data una sequenza di N bit (una strada con N lampioni, 1 =

acceso, 0 = spento), si vuol sapere quanti lampioni bisogna

accendere affinché ogni sottosequenza di M lampioni ne

abbia almeno K accesi (1  K  M  N); due versioni con

diverse complessità: vedi programmi_Python_2.7.9 >

lampioni_1.py e lampioni_2.py

Qualche problema un po’ più difficile …

• Ogni persona in un insieme di N dà la propria disponibilità

per un intervallo di giorni [da, a] compresi. Devono essere

coperti da almeno una persona tutti i giorni da 0 a K – 1,

impiegando il minor numero di persone: vedi

programmi_Python_2.7.9 > turni.py

• Data una sequenza di N interi (una fila di luci di diversi

colori, codificati con i numeri 0, 1, …, C – 1), calcolare la

lunghezza della sottosequenza più corta che contiene

almeno una luce di ciascun colore: vedi codifica in C++

nella cartella programmi_Cpp > luci_di_Natale

• Quanti sono gli alberi binari con N nodi, radice compresa,

che hanno più nodi nel sottoalbero sinistro della radice

rispetto al destro? Vedi codifica in C++ nella cartella

programmi_Cpp > alberi_LR

Alcuni programmi nell’ambiente Maple

Nella cartella programmi_Maple sono contenuti quattro file

commentati (sia i worksheet, sia i file in pdf con i risultati):

1) calcolo di: resto, mcd, fattoriale e numeri di Fibonacci, in

forma sia ricorsiva sia iterativa; calcolo del mcm;

2) i numeri di Bernoulli;

3) i metodi di bisezione e di Erone per calcolare la radice

quadrata; la serie di Gregory-Leibniz per approssimare π;

4) il triangolo di Tartaglia; i numeri di Mersenne e il

problema della fattorizzazione.

Il problema della fattorizzazione (in forma decisionale) è uno

dei pochi noti che appartengono a NP, ma non si sa se siano

NP-completi o se appartengano (anche) a P.

Un altro è il problema dell’isomorfismo tra grafi …

31

32

33

Ancora nell’ambiente Maple …

Nella cartella programmi_Maple trovate anche il file (in pdf)

Introduzione ai sistemi dinamici non lineari, che sviluppai

oltre un decennio fa, nell’ambito del Progetto Problem

Posing & Solving; un tema che potrebbe essere trattato in

un corso sia di Fisica sia di Matematica, corredato di

numerosi problemi risolti con Maple, suddiviso in capitoli:

• un semplice sistema caotico

• il modello differenziale

• i sistemi di Lotka-Volterra

• il sistema prede-predatori

• oscillatori

• il circuito di van der Pol

• biforcazioni di Hopf

34

Un problema dato alla finale Coppa Student Kangourou 2023

(Il quesito è risolto da programmi_Python_2.7.9 > roditori.py riportato

anche nella slide seguente.)

35

Un altro problema della finale Coppa Student Kangourou 2023

(Il quesito è risolto da programmi_Python_2.7.9 > popolazione.py

riportato anche nella slide seguente.)

37

38

39

Partendo dallo scenario di un compito da risolvere

(ovvero da una particolare istanza del problema):

❑ Algoritmi “efficienti” su grafi (pesati / non pesati)

• Minimum Spanning Tree (Borůvka, Kruskal, Prim-

Jarník → Dijkstra per cammini minimi)

• Visite in profondità e in ampiezza …

❑ Problemi “difficili” su grafi (pesati / non pesati)

• Travelling-Salesman Problem (di permutazione)

• Min. Vertex Cover e Max. Independent Vertex Set

(due problemi di sottoinsieme, complementari) …

❑ Altri problemi “difficili”

• Rectilinear Steiner Tree, Bin-Packing (di partizione),

Knapsack, Multiprocessor Scheduling …

40

41

42

→ … Naturalmente, bisogna dimostrare la correttezza

 di questi algoritmi!

43

Algoritmo di Kruskal (1956)

Vedi codifica in C++ nella cartella programmi_Cpp > Kruskal Sembra facile…

ma l’idea giusta inizia col ripartire i punti da collegare in altrettanti insiemi…

44

Qual è il cammino più breve da Valle Chiara a Fonte Argento?

45

Algoritmo di Dijkstra (1959)

• la tecnica è “greedy ”: si costruisce un insieme S

di nodi, iniziando col solo nodo di partenza v0

• ad ogni passo, si aggiunge all’insieme S il nodo

“più vicino”: tra quelli a distanza di un arco da un

nodo di S, considerando i costi per raggiungerli a

partire da v0 e toccando soltanto nodi di S

• dopo n − 1 passi, l’insieme S è costituito da tutti

gli n nodi, e sono noti i cammini di costo minimo

da v0 a ciascuno degli altri nodi (raggiungibili)

Vedi codifica in C++ nella cartella programmi_Cpp > Dijkstra

46

Algoritmo di Dijkstra primo passo

47

Algoritmo di Dijkstra secondo passo

A Monte Viola si arriva

anche da Colle Fiorito,

ma 25 + 20 > 35

Si raggiunge

pure Bosco Atro

Migliora il tempo per

arrivare a Punta

Secca: 25 + 20 < 50

48

Algoritmo di Dijkstra terzo passo

49

Algoritmo di Dijkstra quarto passo

Algoritmo di Dijkstra quinto passo

Se interessa arrivare a Mulino

Vecchio, possiamo fermarci qui!

51

Algoritmo di Dijkstra sesto passo

52

Algoritmo di Dijkstra settimo passo

Un solo cammino dal

nodo di partenza a

ciascun altro nodo:

“albero”!

53

Algoritmo di Dijkstra: “complessità”

• nel caso peggiore, al crescere del numero n dei

nodi, il tempo di elaborazione tende ad aumentare

in modo proporzionale a n 2

• si può migliorare utilizzando strutture di dati

opportune; comunque è efficiente (e quindi il

problema è trattabile)

• trovare il cammino “più lungo” tra due nodi, o un

cammino che tocchi una e una sola volta ciascun

nodo: per questi problemi non si conoscono (né si

sa se esistano) algoritmi efficienti in generale!

54

55

Visita in ampiezza

56

Backtracking: tutti i percorsi da-a in un di-grafo

Vedi codifica in C++, basata sulla visita in profondità

nella cartella programmi_Cpp > percorsi_alternativi

57

Chiusura transitiva: un problema più semplice

Vedi codifica in C++ dell’algoritmo di Warshall (1962)

nella cartella programmi_Cpp > chiusura_transitiva

58

59

Suggerimento: poiché il grafo è non orientato, basta costruire un

albero di visita a partire da un nodo a scelta e verificare se tutti i

nodi sono stati raggiunti… Questo va fatto dopo aver tolto un arco

ogni volta.

60

Problemi (risolubili) “trattabili”

• Problemi risolubili in tempo polinomiale:

 esiste (ed è noto) almeno un algoritmo risolutivo che

 richiede tempo polinomiale nella lunghezza dell’input

 espressa in bit, e quindi possono essere risolti in modo

 efficiente (sempre entro certi limiti).

Esempi:

• ordinare una sequenza arbitraria di n numeri naturali:

esistono vari algoritmi che richiedono un tempo d’esecuzione

della forma an 2 + bn + c, ma anche algoritmi più efficienti …

• trovare il percorso più breve tra ciascuna coppia di nodi in un

grafo qualsiasi; c’è anche un algoritmo assai compatto, che ha

complessità cubica: Floyd, 1962, stessa idea di Warshall …
(vedi codifica in C++ nella cartella programmi_Cpp > Floyd)

61

Problemi (risolubili) di fatto “intrattabili”

• Problemi intrinsecamente esponenziali:

 qualsiasi algoritmo risolutivo (noto o non noto) richiede

 un tempo che dipende almeno esponenzialmente dalla

 lunghezza dell’input.

Esempi:

• (piuttosto banali) generare tutti gli anagrammi di una parola o

elencare tutte le mosse per spostare una torre di Hanoi

• decidere se due espressioni regolari (con l’operatore quadrato)

generano lo stesso linguaggio (A. R. Meyer e L. J. Stockmeyer, 1972)

• analizzare il gioco del blocco stradale o della dama n × n.

Il confine tra queste due classi di problemi non è affatto netto: è

una zona misteriosa, dove stanno tanti problemi interessanti …

62

63

64

Problema di ottimizzazione dello zaino

• Knapsack : è un problema “di sottoinsieme”.

• Dati (tutti interi positivi; quelli di più oggetti uguali

 occorrono altrettante volte nelle rispettive liste):

• Obiettivo:

65

• Un esempio:

P = 12

pesi = (1, 2, 3, 3, 5, 6)

valori = (2, 4, 6, 6, 7, 9)

Quindi n = 6 oggetti, non importa in quale ordine…

● Quale risultato dà una procedura greedy ?

Se ogni volta scegliamo l’oggetto di maggior valore

possibile, avremo nello zaino gli oggetti 6, 5 e 1:

il peso complessivo sarà 6 + 5 + 1 = 12 (zaino pieno)

e il valore complessivo 9 + 7 + 2 = 18.

Si può fare meglio?

66

❖ Piccola parentesi 1: algoritmo greedy

Ad ogni passo, sceglie l’ottimo locale secondo un

certo criterio. Esempio: comporre una somma col

minimo numero di monete. Con quali tagli funziona?

• Con tagli da 25, 10, 5, 1:

48 = 25 + 10 + 10 + 1 + 1 + 1 ottimo

45 = 25 + 10 + 10 ottimo

• Con tagli da 25, 11, 5, 1:

48 = 25 + 11 + 11 + 1 ottimo

45 = 25 + 11 + 5 + 1 + 1 + 1 + 1 non ottimo

• Con tagli da 25, 12, 5, 1:

48 = 25 + 12 + 5 + 5 + 1 non ottimo

45 = 25 + 12 + 5 + 1 + 1 + 1 non ottimo

67

Piccola parentesi 1 (continua): con quali tagli funziona?

Caratterizzare i sistemi monetari per i quali l’algoritmo greedy

funziona è questione irrisolta, se i tagli sono più di cinque…

Si potrebbero generare, una dopo l’altra, tutte le combinazioni

che compongono la somma data, scartandole non appena il

numero di monete occorrenti supera il minimo finora trovato…

Nella cartella programmi_Python_2.7.9 trovate il programma

monete.py, che calcola in quanti modi si forma un importo,

disponendo a piacere di monete di vari tagli: provate ad

adattarlo al nostro problema!

Due sono le funzioni ivi definite; la seconda, ben più efficiente,

sfrutta l’idea della programmazione dinamica …

68

❖ Piccola parentesi 2: programmazione dinamica

 (R. E. Bellman e G. B. Dantzig, 1956-57)

…

69

Piccola parentesi 2 (continua): giù dall’albero di Natale!

70

71

Zaino ottimo con la programmazione dinamica

• Idea: se in qualche modo abbiamo già parzialmente

riempito lo zaino, il maggior profitto lo otterremo

comunque massimizzando il valore degli oggetti che

vi possono ancora stare, da scegliere tra i rimanenti.

• Ribaltando la prospettiva: supponiamo che la

capacità dello zaino aumenti progressivamente da

1 a P , e ad ogni stadio chiediamoci quale sia il

massimo valore raggiungibile disponendo soltanto

del primo oggetto, o dei primi due, o dei primi tre …

o di tutti gli n oggetti.

72

• Che cosa dobbiamo fare?

→ Quanto a strutture di dati, ci servirà una matrice M con

 almeno P righe e n colonne, oltre a due array p e v

 di n elementi ciascuno, per i pesi e i valori.

→ È quindi opportuno prevedere anche una riga 0 e una

 colonna 0 nella matrice M …

73

• L’algoritmo

74

• Riprendiamo l’esempio:

P = 12, p = (1, 2, 3, 3, 5, 6), v = (2, 4, 6, 6, 7, 9)

Otteniamo la seguente matrice M, con M(12, 6) = 21:

 0 0 0 0 0 0 0

 0 2 2 2 2 2 2

 0 2 4 4 4 4 4

 0 2 6 6 6 6 6

 0 2 6 8 8 8 8

 0 2 6 10 10 10 10

 0 2 6 12 12 12 12

 0 2 6 12 14 14 14

 0 2 6 12 16 16 16

 0 2 6 12 18 18 18

 0 2 6 12 18 18 18

 0 2 6 12 18 19 19

 0 2 6 12 18 21 21

75

• Come risalire agli oggetti da mettere nello zaino?

P = 12, p = (1, 2, 3, 3, 5, 6), v = (2, 4, 6, 6, 7, 9)

76

● Partiamo dall’elemento in basso a destra (che contiene il

valore ottimo) e, restando sull’ultima riga, spostiamoci a

sinistra, fino a incontrare una variazione di valore:

→ tra le colonne 5 e 4: prendiamo l’oggetto 5 e togliamo il

suo peso da 12 → 12 – 5 = 7 è il peso massimo rimanente.

● Risaliamo la colonna 4 fino alla riga 7 e poi spostiamoci a

sinistra, fino a incontrare una variazione di valore:

→ c’è subito, tra le colonne 4 e 3: prendiamo l’oggetto 4 e

togliamo il suo peso da 7 → 7 – 3 = 4 è il peso residuo.

● Risaliamo la colonna 3 fino alla riga 4 e poi spostiamoci a

sinistra, fino a incontrare una variazione di valore:

→ c’è subito, tra le colonne 3 e 2: prendiamo l’oggetto 3 e

togliamo il suo peso da 4 → 4 – 3 = 1 è il peso residuo.

● Risaliamo la colonna 2 fino alla riga 1 e poi spostiamoci a

sinistra: il valore varia tra le colonne 1 e 0, per cui prendiamo

l’oggetto 1 e togliamo il suo peso da 1 → 1 – 1 = 0.

77

Scegliendo gli oggetti 5, 4, 3 e 1, il valore è massimo

e, in questo caso, lo zaino è stato riempito…

Tuttavia, vi sono altre soluzioni ugualmente ottime:

quali? Quella che si trova dipende dall’ordine in cui

si dispongono inizialmente gli oggetti…

● Scriviamo la seconda parte dell’algoritmo:

78

• Un caso particolare: valori uguali ai pesi

Nota: nella formulazione originaria del problema decisionale

(R. M. Karp, 1972), parlando soltanto di pesi, si chiedeva di

stabilire se lo zaino può essere riempito esattamente col suo

peso massimo P, ciò che equivale a chiedere se l’equazione

ha soluzioni in cui ciascuna incognita vale 0 o 1.

79

→ problema di Subset-Sum (… si trova in crittografia)

Porsi la stessa domanda per un sistema lineare a

coefficienti interi non cambia la complessità del

problema, che viene detto di

programmazione (lineare) intera 0-1

□
• Una variante: il problema con ripetizioni

80

Anche per questa variante, si giunge a un algoritmo

che richiede un tempo di esecuzione dell’ordine di

n∙P (per i due cicli annidati), che non è polinomiale

nella dimensione dell’input, costituito da circa

• Complessità rispetto al tempo

bit. Quando l’input è una lista di numeri e il tempo di

esecuzione è limitato da un polinomio nel maggiore di

tali numeri e nella lunghezza della lista, si parla di

algoritmi pseudo-polinomiali.

Il problema dello zaino è NP-hard ma non strongly !

81

Il problema della longest common-subsequence

Vedi programmi_Python_2.7.9 > lcs_fb.py (questo) e lcs_pd.py (il successivo)

Una soluzione più efficiente per il problema della lcs

84

85

Il problema del commesso viaggiatore (TSP)

4 tour (cicli hamiltoniani) possibili:

[1, 2, 5, 6, 3, 4, 1] con costo 34;

[1, 4, 3, 2, 5, 6, 1] con costo 34;

[1, 2, 5, 6, 4, 3, 1] con costo 35;

[1, 3, 2, 5, 6, 4, 1] con costo 42.

Uno dei primi due indifferentemente

(o il suo “rovescio”) costituisce la

soluzione di questa istanza del

problema.

Non si sa se sia intrinsecamente esponenziale, ma finora non

si è trovato alcun algoritmo efficiente per risolverlo in generale!

86

• In generale, nessun algoritmo di approssimazione,

 ma algoritmi spesso praticabili

 1954: Dantzig, Fulkerson e Johnson, su 42 città degli

 USA: programmazione lineare (Dantzig, 1947)

 1962: Held e Karp: progr. dinamica (Bellman, 1957)

 miglior tempo di esecuzione nel caso peggiore:

 O(n 2 ∙ 2 n), decisamente meglio di O(n!),

 ma anche lo spazio cresce esponenzialmente con n

 1963: Little et al.: branch-and-bound (Land e Doig, 1960)

• Casi particolari

 TSP metrico: C(i, j) ≤ C(i, k) + C(k, j)  i, j, k

 algoritmi di approssimazione (con fattori 2, 3/2)

 TSP euclideo: i nodi sono punti del piano, i costi le distanze

 algoritmo esatto in tempo sub-esponenziale

87

TSP: un esempio con grafo completo, metrico (e simmetrico)

Tour ottimo:

[1, 2, 5, 3, 4, 1] con costo 39

(In questo piccolo esempio, funziona

persino l’algoritmo greedy, ammesso

che il nodo di partenza sia 2, 3 o 5 …)

I tanti algoritmi studiati per il TSP

“funzionano bene” nella maggior

parte delle usuali applicazioni …

I “casi peggiori” non sono poi

così frequenti nella realtà!

Si vedano i più recenti successi al sito http://www.tsp.gatech.edu/

http://www.tsp.gatech.edu/

TSP: l’algoritmo più semplice (anche su grafi orientati)

89

Dove installare le torrette di avvistamento?

90

Problema di minima copertura per nodi

• Minimum Vertex Cover : problema “di sottoinsieme”.

• Dati:

un grafo semplice, non orientato, non pesato, privo di cappi,

connesso → può essere rappresentato da una lista di coppie

(u, v) con u < v , denotando gli n nodi con i numeri da 1 a n.

• Obiettivo:

determinare un insieme di nodi di cardinalità minima tale che

ogni arco del grafo abbia in tale insieme almeno uno dei due

nodi estremi.

91

• Un primo algoritmo greedy

Idea: per costruire l’insieme copertura X (inizialmente vuoto),

ad ogni passo scegliamo un nodo v di grado massimo,

aggiungiamo v a X, e togliamo dal grafo sia v sia gli archi

che hanno un estremo in v (e anche gli eventuali nodi che

rimangono isolati) …

Al primo passo abbiamo

due alternative: o C o H

(con 4 archi incidenti).

Scegliamo H …

92

Al terzo passo restano

due alternative: D e I.

…

Al secondo passo, i nodi

di grado massimo (3)

sono quattro: K, C, D, I.

Scegliamo K …

93

Partendo con H, qualunque successiva scelta, a parità di

grado massimo, porta a una delle due coperture minime.

Ma scegliendo inizialmente C e poi B (di grado 3)…

→ Non sempre funziona, anzi non è nemmeno un algoritmo

di approssimazione con fattore costante: nei casi pessimi, il

rapporto (num. nodi scelti / num. nodi ottimi) tende a crescere

(in modo logaritmico) all’aumentare del num. di nodi del grafo.

94

• Un secondo algoritmo greedy

Idea: per ogni arco, almeno uno dei due nodi estremi deve

stare in una copertura minima. Quindi, per costruire l’insieme

X, ad ogni passo scegliamo (a caso) un arco, diciamo quello

tra i due nodi u e v, aggiungiamo a X sia u sia v, e togliamo

dal grafo u, v e ogni arco incidente su u o su v …

In questo esempio,

nessuna scelta porta a

una soluzione ottima…

e se siamo sfortunati

prendiamo tutti i nodi!

95

In generale, nel caso peggiore, la copertura generata è

grande il doppio della minima: è dunque un algoritmo di

approssimazione con fattore costante 2.

Ad esempio, nel caso di K n,n sono presi tutti i 2n nodi,

mentre le due coperture minime ne contengono n.

Con n = 3:

Nota: si tenga presente che su qualsiasi grafo bipartito

il problema è risolubile (esattamente) in modo efficiente.

□

96

● Abbinare i due criteri, scegliendo un arco non a caso, ma

con la massima somma dei gradi dei due nodi estremi?

Nel caso di K n,n non vi sarebbe alcun beneficio!

● Idea per trovare una soluzione ottima: modifichiamo il

secondo algoritmo greedy, calcolando anche che cosa si

ottiene aggiungendo a X o soltanto u o soltanto v,

tenendo presente che, quando si aggiunge uno solo dei

due, si devono per forza aggiungere nel contempo anche

tutti i nodi adiacenti all’altro.

Ad esempio,

scegliendo H ed

escludendo C,

è necessario

includere D, A, K.

97

Un algoritmo per ottenere una soluzione ottima

• Se G è privo di archi, allora restituisce l’insieme vuoto. Fine.

• Altrimenti, sia (u, v) un arco di G, arbitrariamente scelto;

 ricorsivamente, risolve tre problemi (possibilmente in parallelo):

1. X ← { w | (w, u) è un arco di G } e sia G1 il grafo che si ottiene da

G togliendovi i nodi in X e gli archi su di essi incidenti; sia X1 la

soluzione trovata quando è dato G1; infine, X1 ← X1 U X.

2. X ← { w | (w, v) è un arco di G } e sia G2 il grafo che si ottiene da

G togliendovi i nodi in X e gli archi su di essi incidenti; sia X2 la

soluzione trovata quando è dato G2; infine, X2 ← X2 U X.

3. Sia G3 il grafo che si ottiene da G togliendovi i nodi u e v e gli

archi su di essi incidenti; sia X3 la soluzione trovata quando è dato

G3; infine, X3 ← X3 U { u, v }.

• Restituisce l’insieme di cardinalità minore tra X1, X2 e X3. Fine.

98

Si dimostra che, se k è il numero di nodi della minima

copertura, allora la profondità a cui giunge l’algoritmo

ora descritto è, al più, k → la complessità rispetto al

tempo presenta un fattore 3k.

• Complessità rispetto al tempo

In effetti, il problema è NP-hard.

● È un caso particolare di minima copertura di un

insieme (Minimum Set Cover): basta considerare, per

ogni nodo, l’insieme degli archi su di esso incidenti e,

come “universo”, l’insieme di tutti gli archi del grafo.

Minimum Set Cover è equivalente al minimo insieme

dominante (Minimum Dominating Set).

99

• Come ricondurre efficientemente MDS a MSC?

Per ogni nodo v, consideriamo l’insieme costituito da v e tutti

i nodi adiacenti a v …

{ A, C, K } { B, D, H, I }

{ C, A, D, H, K } { D, B, C, E }

{ E, D, I } { F, H, I }

{ G, H, K } { H, B, C, F, G }

{ I, B, E, F } { K, A, C, G }

Qui ci sono ben 8 coperture di soli

tre sottoinsiemi (2 sono evidenziate

in rosso e in verde, rispettivamente).

Nota: nessuna copertura è “esatta”.

Provate a ricondurre Min. Set Cover a Min. Dominating Set.

100

“Complementare”: massimo insieme indipendente

Trovare un insieme di nodi di cardinalità massima

che, a due a due, non sono collegati da un arco.

Se X è un insieme di nodi, sono equivalenti:

• X è un insieme indipendente

• ogni arco incide su al più un nodo  X

• ogni arco incide su almeno un nodo  X

• il complemento di X è una copertura per nodi

→ un massimo insieme indipendente è

complemento di una minima copertura per nodi.

101

Considerando poi il grafo complementare …

Un insieme indipendente è costituito dai nodi di un

sottografo completo (clique) nel grafo complementare.

Minimum Maximum Maximum Clique

Vertex Cover Independent (nel grafo

 Vertex Set complementare)

102

Algoritmi esatti

Se X è un massimo insieme indipendente, allora,

per ogni nodo v del grafo, delle due l’una: o v

o almeno uno dei suoi adiacenti appartiene a X …

→ per tutti i citati problemi “difficili” sui grafi, si può

pensare di risolvere, ricorsivamente e possibilmente

in parallelo, due o più sottoproblemi di dimensione

ridotta, e poi confezionare una soluzione esatta

utilizzando una di quelle dei sottoproblemi che

presenti determinate caratteristiche

→ tuttavia, il tempo cresce esponenzialmente col

numero di nodi …

103

❑ Puzzle semplici da programmare (con backtracking)

• Una soluzione, se c’è, è tutta contenuta nello “stato finale”,

 non nella sequenza di mosse per raggiungerlo.

• disegno di un giro di cavallo (aperto o chiuso) su scacchiera

 n × n o m × n, oppure di un percorso per uscire da un labirinto

• Per evitare di incorrere in cicli, se c’è questo pericolo, basta

 lasciare nello stato corrente una traccia del “percorso” fatto

 (che alla fine indicherà la soluzione trovata).

Esempi (trovare una soluzione, se c’è, oppure tutte …):

• completamento di uno schema di Sudoku (anche come

 istanza di Exact Cover Set o, in parte, con tecniche ad hoc)

• puzzle con tessere a incastro (ad es. polimini …)

Uno schema di Sudoku assai difficile

“The Sudoku Susser”

qui si arrende, e lo

risolve soltanto con la

“forza bruta”!

• Intersezione tra

sesto riquadro e C7:

il numero 3 non

appare altrove in C7

e quindi 3 si può

cancellare dalle altre

caselle del sesto

riquadro (R4C9, R5C9

e R6C9) … Ma poi?

• Come dice Jean-Paul Delahaye, questo procedimento, a mano,

“non è praticabile, perché richiederebbe una pazienza sovrumana”.

Almeno nell’ambito del Sudoku tradizionale, “il metodo più efficiente

per una macchina è il più faticoso per un essere umano”.

Exact cover problem

• Problema di “esatta copertura” di un insieme (strongly NP-hard):

 un esempio.
“Se possibile, scegliere degli insiemi tra

questi otto, in modo che sia preso una e

una sola volta ciascun elemento di S.”

S =

1 2 3 4 5

a 1 0 1 0 0

b 1 0 0 1 1

c 0 1 1 0 1

d 0 1 0 1 0

e 0 1 0 0 1

f 0 0 1 1 0

g 0 0 0 1 1

h 0 0 0 0 1

Sudoku come exact cover problem …

• Un puzzle di Sudoku può ricondursi a un’istanza di tale problema.

Ad esempio, nel caso 4 x 4:

… in R3C4 può stare il 2; se lo fissiamo:

• tale casella non è più occupabile,

• nella terza riga c’è il 2,

• nella quarta colonna c’è il 2,

• nel quarto riquadro c’è il 2.

Quante righe ha questa matrice?

• Nel caso 4 x 4 (k2 x k2, con k = 2):

• In generale: matrice di bit, con 4·k4 colonne e k6 – (k2 – 1)·n righe,

se n sono i numeri scritti nello schema iniziale;

ciascuna riga contiene comunque quattro 1.

Nel Sudoku classico, k = 3; ma risolvere Sudoku (k) è NP-hard …

• Problema: determinare un sottoinsieme di k4 righe che presentino

esattamente un 1 in ciascuna colonna.

Matrice di bit, con 64 righe (quindi quadrata, ma è un caso!) …

Ogni numero fissato nello schema iniziale esclude tuttavia 3 righe!

… e metodi per risolverlo

• Knuth: Algorithm X per exact cover problem, basato su back-

tracking e realizzato con una tecnica particolare (dancing links),

è piuttosto efficiente per istanze di ragionevole dimensione.

• Realizzato in Python (ma usando sets anziché liste bidirezionali

circolari) e applicato al Sudoku 9 x 9, richiede qualche centesimo

di secondo, al più alcuni secondi per i puzzle più difficili.

Donald E. Knuth, Stanford University, 2000: “Dancing Links”

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Ali Assaf, 2013: “Algorithm X in 30 lines!”

http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html

110

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html

• In altri interessanti articoli, Algorithm X è spiegato, realizzato e

applicato a diversi rompicapi: pentamini e loro varianti (Kanoodle),

quadrati latini, Sudoku e creazione di nuovi schemi iniziali …

Peter Norvig, 2011: “Solving every Sudoku puzzle”

http://www.norvig.com/sudoku.html

Andrzej Kapanowski, “Python for Education: The Exact Cover Problem”,

The Python Papers 6, 2 (2011)

http://ojs.pythonpapers.org/index.php/tpp/article/view/227

David Austin, AMS, 2015: “Puzzling Over Exact Cover Problems”

http://www.ams.org/samplings/feature-column/fcarc-kanoodle

Team # 3140, “The Application of Exact Cover to the Creating of Sudoku Puzzle”

http://www.math.utah.edu/~yzhang/teaching/1030/Sudoku.pdf

• Per non perdere lo spirito del gioco, si possono combinare

backtracking e strategie logiche elementari, facilmente calcolabili:

l’efficiente programma di Norvig, scritto in Python, è basato su

due funzioni mutuamente ricorsive.

111

http://www.norvig.com/sudoku.html
http://ojs.pythonpapers.org/index.php/tpp/article/view/227
http://www.ams.org/samplings/feature-column/fcarc-kanoodle
http://www.math.utah.edu/~yzhang/teaching/1030/Sudoku.pdf

Un programma semplice per costruire schemi

Un puzzle con i dodici pentamini e un tetramino

… ma bicolori! Quante mai saranno le soluzioni?

Henry Ernest Dudeney, “74. The broken chessboard”, in “The Canterbury

Puzzles”, London: William Heinemann (1907), pp. 90-92, 174-175

113

I dodici pentamini e le loro 63 diverse posizioni

Sei pentamini devono essere colorati su entrambe le facce!

114

Puzzle risolto da uno dei primi programmi con backtracking

Dana S. Scott, “Programming a combinatorial puzzle”, Technical Report No. 1

(1958), New Jersey: Department of Electrical Engineering, Princeton University

(Il programma fu realizzato con l’aiuto di Hale F. Trotter.)

Le soluzioni diverse sono 65,

trovate dal programma di Scott e

Trotter in circa 3.5 ore:

19 con X centrato in (2, 3);

20 con X centrato in (2, 4);

26 con X centrato in (3, 3) e

 P non ribaltato (per evitare di

 contare due volte le soluzioni

 simmetriche rispetto alla

 direzione NW-SE).

115

116

Per ciascuno di questi tre casi:

• ognuno degli altri 11 pezzi deve essere

collocato una e una sola volta,

• ognuna delle 55 caselle rimaste libere deve

essere occupata da uno e uno solo di essi.

• Tre distinte istanze del problema

di “esatta copertura” di un insieme

• Struttura dei dati:

una matrice di bit con 66 colonne:

 11 i pezzi (collocato X) e

 55 le caselle rimanenti;

una riga (con esattamente sei 1)

per ogni collocazione ammissibile

di ciascuno degli 11 pezzi sulla

scacchiera “bucata”

• Sia ciascun pezzo, sia ciascuna casella devono essere

presi una e una sola volta, e dunque ad ogni sottoinsieme

costituito da 11 righe, che presenti esattamente un 1 in

ciascuna colonna, corrisponde una soluzione.
117

Se qui si aggiunge il tetramino

quadrato al centro, NON si ottiene

una soluzione del puzzle di

Dudeney, anche potendo ribaltare

i pezzi della scacchiera; infatti …

D’altronde, Dudeney NON richiede che il tetramino quadrato

sia al centro − e nella sua soluzione non lo è!

Generalizzando, il problema con i dodici pentamini in tinta unita

e il tetramino quadrato in una qualsiasi collocazione

ammette 16146 soluzioni diverse nel quadrato 8 x 8;

si veda: Donald E. Knuth, “Dancing Links”, 2000
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

118

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Altri puzzle “onerosi”: comporre rettangoli con i 12 pentamini

Rettangolo 6 x 10

Colin B. Haselgrove, Jenifer Haselgrove, “A computer program for pentominoes”,

Eureka 23, 2 (1960), Cambridge, England: The Archimedeans, pp. 16-18

2339 diverse soluzioni,

trovate dal programma

di Fletcher in circa 10

minuti!

John G. Fletcher, “A program to solve the pentomino problem by the recursive

use of macros”, Communications of the ACM 8 (1965), pp. 621-623

http://www.cs.virginia.edu/~skg5n/fletcher.pdf

http://www.cs.virginia.edu/~skg5n/fletcher.pdf

Rettangolo 5 x 12

1010 soluzioni

Rettangolo 4 x 15

368 soluzioni

Rettangolo 3 x 20 Soltanto 2 soluzioni: qual è l’altra?

Comporre un quadrato con 45 pentamini Y

Una singola soluzione fu trovata da Jenifer Haselgrove: “Packing a square

with Y-pentominoes”, Journal of Recreational Mathematics 7 (1974), p. 229.

La lista di tutte le 212 soluzioni è di Donald E. Knuth (“Dancing Links”, 2000)

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Con ognuno dei 12 pentamini si può realizzare una

tassellatura periodica del piano …

Tassellatura periodica:

si ripete lungo due

direzioni indipendenti

→ si può individuare un

parallelogrammo periodico

123

Uscita dal labirinto (se c’è): la prima o una migliore

Cambiando l’ordine delle quattro direzioni, la soluzione trovata

può essere diversa.

Versione ottima: si provano tutte per ottenere una delle più brevi.

Vedi codifiche in C++ nella cartella programmi_Cpp > labirinto

124

Tante variazioni sul tema del labirinto …

125

126

127

❑ Puzzle un po’ più complicati …

• Una soluzione, se c’è, consiste nella sequenza di mosse che

 ha portato a uno stato finale, magari già noto, ma dal quale

 non può essere dedotta.

• Talvolta non si rischia di cadere in cicli (ad es. se le pedine

 non possono retrocedere o se ne è tolta una ad ogni mossa)

• … ma spesso invece occorre mantenere una “lista” degli stati

 toccati lungo il percorso fatto …

• Volendo poi trovare tutte le soluzioni più brevi, oltre a forzare

 il backtracking, occorre mantenere un “insieme di soluzioni”

 (ciascuna soluzione è una “lista di stati”):

 - quando è trovata una soluzione di pari lunghezza, è aggiunta

 alle altre;

 - se è trovata una soluzione più breve, rimpiazza tutte le altre.

128

A prua e a poppa

W. W. Rouse Ball (1892), Sam Loyd (1914)

129

Soluzione in 46 mosse, particolarmente elegante per la sua simmetria,

trovata da H. E. Dudeney nel 1898:

In 46 mosse, numero minimo, ve ne sono altre 2475 che iniziano con 1.

(Le 75 soluzioni più lunghe che iniziano con 1 richiedono 58 mosse.)

130

❑ Giochi per due …

• Come “risolvere” un gioco tra due avversari

(sufficientemente semplice, ad esempio il tris

o una sua variante, vedi M. Gardner)

• Come realizzare un gioco tra due avversari

fermando l’analisi a una certa profondità

• Come determinare quale dei due avversari ha

la strategia vincente in un gioco combinatorio

imparziale (di vario genere: NIM, il gioco di

Euclide, Babylone …)

• Giochi di altro tipo, ad esempio Master Mind :

come programmare il ruolo di solutore …

131

NIM (Charles L. Bouton, 1901)
• A turno, ciascuno dei due giocatori prende quanti fiammiferi

vuole (almeno uno) da una sola delle file in cui sono ripartiti.

• Vince chi prende per ultimo.

Scriviamo in binario il numero di fiammiferi in ciascuna fila e

calcoliamo l’even parity bit per ogni colonna di cifre binarie:

 1 0 0 0

 1 0 0 1

 1 1 0 1

 1 1 0 0

Per vincere, bisogna ridurre a 0 tutti i bit di parità …

132

• togliere 4 fiammiferi dalla prima fila, oppure

• togliere 4 fiammiferi dalla seconda fila, oppure

• togliere 12 fiammiferi dalla terza fila.

 0 1 0 0

 1 0 0 1

 1 1 0 1

 0 0 0 0

Se nella prima fila vi fossero stati 6 fiammiferi anziché 8,
allora una soltanto sarebbe stata la mossa giusta: quale?

Qui chi gioca ha la possibilità di vincere; tre le mosse “giuste”:

 1 0 0 0

 0 1 0 1

 1 1 0 1

 0 0 0 0

 1 0 0 0

 1 0 0 1

 0 0 0 1

 0 0 0 0

133

13 = 8 + 4 + 1 = 11012 → vince il secondo (idem con 12)

→ tolto l’ultimo bit, se i bit 1 sono pari vince il secondo,

 altrimenti vince il primo, comunque muovano: “ininfluenti”!

→ sequenza del vincitore non periodica (Prouhet-Thue-Morse)

… da non confondere col “gioco di Grundy” (1939).

Attenzione ai giochi …

• infiniti: Pong Hau K’i, Picaria …

• in cui lo stesso giocatore può sempre vincere: Kayles …
• in cui entrambi i giocatori sono “dummy”: Babylone-one …

134

Un gioco infinito: Pong Hau K’i

• A turno, ciascun

giocatore sposta una

delle pedine del proprio

colore lungo un lato,

sino al vertice libero.

• Vince chi riesce a

impedire all’avversario
qualsiasi mossa.

135

• Tuttavia, se nessuno

commette errori, la

partita non termina:

chiunque inizi, nessuno

dei due giocatori ha

modo di forzare il
blocco dell’avversario!

Supponiamo che inizi il Bianco e che si giunga allo stato qui
sotto raffigurato, con mossa al Nero: allora il Nero vince!

136

Qualche esempio, dove i due giocatori collocano a turno le

proprie pedine, prima di muoverle, e lo scopo è fare un tris:

• Tapatan / Achi con 3 / 4 pedine a testa sul tavoliere a sin.

 Ha una strategia vincente il primo giocatore.

 Achi presenta interessanti varianti…

Sono tantissimi i giochi con pedine su tavolieri…

• Picaria con 3 pedine a testa sul tavoliere a destra
 Nessuno dei due giocatori può forzare la vittoria:

 è un gioco infinito!

137

Giochi a due, determinati, a somma 0: il tris

138

• Tris: 765 stati (modulo simmetrie) di cui 138 finali,
 26830 partite (differenti sequenze di stati)

Alcuni giochi risolti (a favore della parità)

• Awari: circa 900 miliardi di stati (2002)

• Dama 8×8: circa 5 ∙ 10 20 stati (2007)

• Tela classica: circa 8 miliardi di stati (1995)

Alcuni giochi che mai saranno risolti

• Scacchi: numero di stati stimato con 47 cifre decimali

• Shōgi: numero di stati stimato con 71 cifre decimali

• Go 19×19: numero di stati stimato con 171 cifre decimali

139

Awari

Stato del gioco dopo Sud 2:

… e Sud guadagna 7 semi.

Risolto in senso forte: per ognuno degli stati (essenzialmente

diversi) è stata trovata la lista delle mosse “giuste” da fare!

140

Come realizzare un programma che giochi bene

• Ricordare le varianti principali!

• Minimizzare la massima perdita possibile (su un orizzonte)

141

Potatura alpha-beta (J. McCarthy, 1956)

• Applicata agli scacchi da Newell, Simon e Shaw (CIT, 1958).

Awari a profondità 8: risparmio di tempo > 50%

142

• Minimal Window Principal Variation Search:
 T. A. Marsland e M. Campbell (1982-85)

Miglioramenti

• Nega-Scout: A. Reinefeld (1983-89)

Awari a profondità 14: risparmio di tempo > 15% vs alpha-beta

• L’efficienza aumenta notevolmente se le mosse lecite sono
 almeno una ventina e sono ordinate in una lista best-first.

• Iterative deepening: ordinamento best-first a ciascun livello
 di profondità, prima di passare al livello successivo.

• Transposition table: per evitare di analizzare più volte uno
 stesso stato del gioco.

L. Torres y Quevedo, El segundo ajedrecista, 1920 (Politecnico di Madrid, foto dell’autore)

144

Photomaton (J.-P. Delahaye e P. Mathieu, 1997)

Se il formato dell’immagine è 2m × 2n pixel,

e p1 = il più piccolo intero tale che 2m – 1 divide 2^p1 – 1

e p2 = il più piccolo intero tale che 2n – 1 divide 2^p2 – 1

allora l’immagine iniziale riappare dopo mcm (p1, p2) passi.

145

• L’immagine del gatto è di formato 350 × 512 pixel.

• Il più piccolo intero p1 tale che 349 divide 2^p1 – 1 è 348 = 22 * 3 * 29;

• il più piccolo intero p2 tale che 511 divide 2^p2 – 1 è 9 = 32.

• Dunque, l’immagine del gatto riapparirà dopo 1044 passi…

dopo un passo… dopo due…

146

Tuttavia, alcuni passi intermedi danno curiosi risultati; ad esempio:

• dopo 488 passi l’effetto è quello di vedere 5 (!) x 4 gatti “ribaltati”…

dopo 33 passi… dopo 34… dopo 488…

147

• dopo 522 passi (la metà di 1044: ma sarà sempre così?) l’immagine

 originale riappare perfettamente ribaltata lungo l’asse verticale;

• infine, dall’immagine del passo 1043, dove la testa del gatto s’intravede

 ingrandita, si ritorna in un solo passo all’immagine nitida di partenza!

dopo 522 passi… dopo 1043… dopo 1044

148

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44: Qual è il cammino più breve da Valle Chiara a Fonte Argento?
	Diapositiva 45: Algoritmo di Dijkstra (1959)
	Diapositiva 46: Algoritmo di Dijkstra primo passo
	Diapositiva 47: Algoritmo di Dijkstra secondo passo
	Diapositiva 48: Algoritmo di Dijkstra terzo passo
	Diapositiva 49: Algoritmo di Dijkstra quarto passo
	Diapositiva 50: Algoritmo di Dijkstra quinto passo
	Diapositiva 51: Algoritmo di Dijkstra sesto passo
	Diapositiva 52: Algoritmo di Dijkstra settimo passo
	Diapositiva 53: Algoritmo di Dijkstra: “complessità”
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60: Problemi (risolubili) “trattabili”
	Diapositiva 61: Problemi (risolubili) di fatto “intrattabili”
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64: Problema di ottimizzazione dello zaino
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71: Zaino ottimo con la programmazione dinamica
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85: Il problema del commesso viaggiatore (TSP)
	Diapositiva 86
	Diapositiva 87: TSP: un esempio con grafo completo, metrico (e simmetrico)
	Diapositiva 88: TSP: l’algoritmo più semplice (anche su grafi orientati)
	Diapositiva 89
	Diapositiva 90: Problema di minima copertura per nodi
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97: Un algoritmo per ottenere una soluzione ottima
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103: Puzzle semplici da programmare (con backtracking)
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127: Puzzle un po’ più complicati …
	Diapositiva 128: A prua e a poppa
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131: NIM (Charles L. Bouton, 1901)
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134: Un gioco infinito: Pong Hau K’i
	Diapositiva 135
	Diapositiva 136
	Diapositiva 137: Giochi a due, determinati, a somma 0: il tris
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140: Come realizzare un programma che giochi bene
	Diapositiva 141: Potatura alpha-beta (J. McCarthy, 1956)
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144: Photomaton (J.-P. Delahaye e P. Mathieu, 1997)
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148

