Problemi, soluzioni,
codifiche

Lorenzo Repetto

repetto@calvino.ge.it

mailto:lorenzo.repetto@calvino.ge.it

Come furono descritti gli algoritmi prima del 19457
 Mesopotamia, ~ 40 secoli fa: i piu antichi a noi noti.

Soltanto sequenze di calcoli su particolari dati,
non la descrizione di una procedura astratta generale.

1 Grecia, ~ lll secolo a.C.: Euclide, Eratostene, ...

Molti algoritmi non banali formulati in astratto, ma
sempre informalmente, in linguaggio naturale.

1 Nel corso del secoli, i matematici hanno sviluppato
* notazioni assai precise per descrivere la parte statica,
= non altrettanto per la parte dinamica, in particolare:

Invecedi X« x+3 sempre X,,;=X,+3

Nel diagramma originale stilato da Ada Byron (1843):

* manca l'idea di array, sicché dev’essere preordinata una (lunga e
precisa) sequenza di variable-card, per ripetere le operazioni su
variabili “con indice aumentato di un’unita” di volta in volta;

* non sono formalizzate le istruzioni di salto condizionato, ...

ma tutto e descritto precisamente!

* e impostato un calcolo di complessita (hnumero di operazioni
aritmetiche), ma nulla e detto sui progressivi errori numerici.

Punti di forza delle sue Note:

 capacita di sintesi e di penetrazione nelle problematiche
epistemologiche;

* |a macchina analitica e potenzialmente universale:
permette qualsiasi computazione (gia intuito da Babbage);
* | nUMeri possono rappresentare entita che non siano
mere guantita o misure j>‘ calcolo simbolico !

Circa un secolo dopo...

Notazione veramente precisa e completa,
“a livello macchina”, sia in stile funzionale (A-calcolo di
Church) sia in stile imperativo (macchine di Turing)

Definizioni di funzione (effettivamente) calcolabile e di
algoritmo: diversi formalismi, ma stessa nozione!

» calcolo deli combinatori — Schonfinkel e Curry, 1920-1930
» \-calcolo — Church, Rosser e Kleene, 1931-1941

e ricorsivita generale — Gddel, 1934 (da Herbrand)

» calcolo delle equazioni — Kleene, 1936 (da Godel)

* macchine (universali) di Turing — 1936

e sistema di produzioni canonico di Post — 1936-1947

“Calcolo delle equazioni”

Definizioni intensionali di funzioni con proprio nome, da n-uple

di naturali ai naturali, applicabili anche ai risultati di (altre) funzioni,
In generale parziali, ricorsive 0 mutuamente ricorsive.

Esempio: la funzione di Ackermann (1928), ricorsiva totale ma
non ricorsiva primitiva.

AQ,y) =y +1
A(x+1,0)=A(x 1)
Ax+1,y+1)=AKX AX+1,Y))

In ML (1973):

fun A(x, y) =
if x=0 then y+1
else 1f y=0 then A (x-1, 1)
else A(x-1, A(x, yv-1));

Comandi / istruzioni nel Plankalkil: “Lo scopo del Plankalkil e fornire una
descrizione puramente formale di qualsiasi processo computazionale.”

. assegnazione: X+3 = X
Zuse fu il primo... ed era consapevole di cio che faceva!
= Ergibt-Zeichen = segno di produzione, con ricevente
a destra; Rutishauser lo propose per TALGOL 58 ...

_—

. condizionale: una sorta di “guarded command” F; . P;

. varie forme di cicli (anche annidati): (Bedingt-Zeichen)
. a numero di iterazioni precalcolato
. oppure no, con “guardie” riprese dalla logica del predicati
del prim’ordine (anche con quantificatori), operatore u ...

. niente goto (neé label), ma possibilita di interrompere una
sequenza di istruzioni ed eventualmente uscire da un ciclo al
livello di nesting specificato — quindi il goto non serve!

. niente primitive per 1/O — dipendenti dalla macchina!

Wiederholungsplane (Zuse, manoscritto originale)

— \
F; ~7 P; ¢un’istruzione, equivalente a if then (ma senza else)

Nota: qui Fin? ¢ trattata come una variabile...

v
S

= = GRS GRS =

A

n =

Ordl(V) = R
0 0
m X o m X T
V = Z
0 0
mxo mXxo
Wim-1)| Z2 = Z|i
0 1
1+ 1
o o | 1.
W le=>0—
e =—1 —
i 1n 1.n
7 =R

0

Ordinare un array con straight insertion sort (P3.27)

0

mxao mXxXao

[Z =7

0 0
€ e+1

0 o

[7 =7

1 0
41

a a

e—1=¢]"

Fin®]

N.B.: Fin2 e Fin3

NON Fin e Fin?
perché c’¢ anche il
livello della guardia
internal

(Ho aggiunto Fin?,
altrimenti la _
condizione successiva
puo far riferimento
all’elemento di posto
—1, inesistente...)

FIGIRE 7.10

Al Al L Al I .
1 2 | " 2 g(i) I “ 2 g(I) - PR
f 1 T T
L A l'S [12 2 — 2.6 . L3
®+ ': '2 - e T A > L=T M P=9(I) to A.E'—'——-@
— | D I 4
. . = 2] !B 2'\5 |y *
@l T3t 2 & : i
i
) +
Al L+ = Bl N/
. -4 & : . 1
= 9(L+‘> :YI B‘FKJ,L)# e = .:Y
1
- , +,51 [
_) : 0) TO":'\’-’ ll | . P T ’
+ 3 g(i+ N=z(f(g,)+ g 2 —< J=I =< J K
I — /
. e Y .5 ', y
L
') j+ to Bal! %) [B. j N
B 41 FQ+,L)=(FG,02-F(,)la(U% 2 4 2 f(j,u)
_F. a\F- J N _
& (J+I,L) J’-,.o._>j S J
5 i
p=gil)’,
gtly =1, glitl) == (ftd, i)+ glil};

fOI0) =4, f(j+1,i) = (f(j,1)° = f(j,i)) gti).

... Diagrammi per pianificare 1 programmi ...
(H. Goldstine e J. von Neumann, 1947)

Jr Acceleration
1; Maonitoring

L

ANN Calculation

|

Earthquake & Intensity
Notification

: No il
| Time S~ Yes iR
1
: 7 sec v : :
!) , i| "No
: TNO Intensity Calculation |« [: A
| o
! Yes > i
! N Yes | ANN Calculation
' 0.02 ik '
I .02g I
! No Intensity > : B l
: T Prev. one . :
| oy
I L
: Acceleration . yYes . !
. . l 1
| Mom:c::)rlng Nearby Devices Lookup : :
| t
| L
1 L
1 L
| L
| : 1
I 1o

... A flow chart to detect an earthquake ...
(J. Lee et alii, 2019)

« Condizioni per ottenere un risultato da una procedura di
calcolo

 Provarne la correttezza ...

L’attivita di codifica di una procedura di calcolo «has to be
viewed as a logical problem and one that represents a new
branch of formal logics.»

(H. H. Goldstine & J. von Neumann, 1947)

«The programmer should make assertions about the various
states that the machine can reach. The checker has to verify
that [these assertions] agree with the claims that are made
for the routine as a whole. Finally the checker has to verify
that the process comes to an end.»

(A. M. Turing, 1949)

Da una proposta per le ultime classi di una scuola primaria:

[...] L'informatica a scuola spesso si limita all'uso di computer,
tablet e programmi applicativi. Tuttavia il contributo culturale
piu significativo che ci offre I'informatica e il “pensiero
computazionale”, ovvero lI'insieme dei processi mentali che
mette in atto un informatico nella sua tipica attivita di problem
solving. Si tratta di competenze trasversali, utili e declinablli in
tutti gli ambiti disciplinari: formulare | problemi in modo che
possano essere risolti iIn maniera automatica da agenti
autonomi, analizzare e organizzare con logica le informazioni,
rappresentarle attraverso modelli e astrazioni, automatizzare
lo svolgimento di compiti tramite sequenze di passi ordinati,
generalizzare e trasferire processi risolutivi a una grande
varieta di situazioni diverse. [...]

Primi comandi in LOGO nttps://xlogo.inf.ethz.ch/release/latest/

fd
bk
rt
1t
posizione setpc
e direzione
iniziali cs
200

=

repeat 4

200

[fd 200 rt 90]

vai in avanti per un dato numero di passi
vai indietro per un dato numero di passi
gira di un dato angolo (in gradi) a destra

gira di un dato angolo (in gradi) a sinistra

cambia il colore della penna

cancella tutti i tratti disegnati e torna alla posizione iniziale

400

350

200

150

100

50

250

300

Poligoni “regolari” e linee “curve”

?

repeat [fd </ rt 360/m]

=360 o = 180, multiplo di

repeat 10 [fd 100 rt 36]

v

repeat [f£d rt 360/m] repeat 2 [repeat 120 [fd 3 rt 1] rt 60]

setpc green

Nominare programmi, definire uno o piu parametri

1 to quadratol00

2 repeat 4 [fd 100 rt 90]
3 end i"

repeat 3 [quadratolO0 £d 100]

v

1 to quadrato :lato
2 repeat 4 [fd :lato rt 90]
3 end

repeat 3 [guadrato 100 fd 100]

&

1 to poligono :lato :colore
2 setpc :colore repeat [fd :1lato rt 360/ 1
3 end

repeat 3 [poligono 4 100 black fd 100]

Alcuni disegni, usando la procedura “poligono”

1l to poligono :lato :colore
2 if > 2 [setpc :colore repeat [fd :lato rt 360/ 11
3 end

repeat 4 [

poligono 4 100 green
rt 90 fd 100 1t 60
poligono 3 100 blue
rt 60 fd 100 1t 90

repeat 12 |
poligono 360 2 orange
walit 10

repeat 3 [
poligono 6 70 orange
fd 70 rt 60 f£d 70 1t 60

70

Una stella a 5 punte e una corolla con 9 petali

rt 18 repeat 5 [fd 200 rt 144]

to terzocirc
repeat 120 [fd 3 rt 1]
end

to petalo
repeat 2 [terzocirc rt 60]
end

to corolla
repeat 9 [petalo rt 40]

end

corolla

Una stella a 6 punte "animata”

: to punta
60° ! fd 100 1t 120 fd 100 rt 60

/" end

setpc red
punta

to stella
repeat 3 [setpc red punta setpc blue punta]
end

to stella animata
ht stella
repeat 60 [
wait 10
setpc white
repeat 6 [punta]
rt 6
stella
] st

end ht nascondi la tartaruga

st mostra la tartaruga
stella animata

Spirali in forma “ricorsiva”

to spirale inf :lato :ang :1nc
fd :lato 1t :ang

spirale inf :lato+:1inc :ang :inc
end

to spirale ric :lato :ang :1nc :n
if :tn > 0 [
fd :lato 1t :ang
spirale ric :lato+:inc :ang :inc :n-1

]

N

spirale ric 20 60 5 60

-

rt 90
spirale ric 50 90 50 8

spirale ric 200 60 0 6

Spirali in forma “iterativa” (equivalente)

to spirale it :lato :ang :1inc :n
make "lato cor :lato

repeat :n |

fd :lato cor 1t :ang rt 90 |

make "lato cor :lato cor+:inc — spirale 1t 50 90 50 8
]
end

Spirali? /\

1t 18
spirale it 200 144 0 5 spirale it 200 156 0 30

Altre spirali ...

_

spirale it 20 120 18 36

spirale it 20 125 18 36 Provare i comandi:

spirale inf 15 121 15

spirale inf 15 125 15

Colorare superfici

100

to quadratopieno :lato :colore

setpc :colore
repeat :lato/2 [fd :lato rt 90 fd 1 rt 90 fd :lato 1t 90 fd 1 1t 90]

end

= W M=

setpc white 1t 90 f£d 400 rt 90
repeat 4 [quadratopieno 100 yellow guadratopieno 100 green]

Per disegnare una scacchiera 8x8:

setpc white fd 300 1t 90 fd 400 rt 90

repeat 4 |
repeat 4 [quadratopieno 100 yellow quadratopieno 100 green]

setpc white Dbk 100 1t 90 f£d 800 rt 90
repeat 4 [quadratopieno 100 green quadratopienc 100 yellow]
setpc white Dbk 100 1t 90 fd 800 rt 90

Alcuni esempi con Scratch https://scratch.mit.edu/

quando si clicca su

chiedi e attendi

porta 3 |a nsposta

chiedi e attendi

porta b ' a #Hsposta

r'q;!h' finoaquando b =[i]
porta v a resto della divisione di a diviso b

porta 2 a b

porta b a r
-3

dire unione di ('Rl Be a per B secondi

quando si clicca su

LM Ciao! Posso calcolare quoziente e resto di una divisione, per sottrazioni successive,

chiedi [HGUIRE-TTECGEENN e attendi

porta dividendo |a risposta

s (0 Tl Dirnmi il divisore.,, EEL L[
porta divisore | a risposta
porta quoziente |a [i]

porta resto | a dividendo

ripeti fino a quando resto < divisore
porta quoziente | a quoziente +ﬂ

porta restoc | a resto - divisore

-

T T T Ll quoziente = ER L h

‘ferma lo script

e unione di [T Lkl e resto

per) secondi

quando si clicca su

W Ciao! Posso dirti |a data della Pasqua di un anno a tua scelta, dal 1900 al 2099, 08 7 EIECL T
chiedi e attendi

porta anno |a nmsposta

porta a3 |a resto della divisione di anno diviso

porta b |a resto della divisione di anno diviso [J

porta c |a resto della divisione di anno diviso

porta d a resto della divisione di * a + LIV ERY 30 |

porta & |a resto della divisione di a * b + a *c + E * d + B diviso
se d=F] e e =3

d =F] e

dire
altrimenti

porta f d + e

f =B

dire unione di

f-0 -
altriment

dire unione di

R 22 B marzo!

ferma lo script

quando si clicca su

LM Ciao! Posso dirti se un numero a tua scelta, maggiore di 1, & primo oppure no. Fagl 5 U]

chiedi IR e attendi

porta nurMmearo a rnsposta

porta divisore a H

ripet fino a quando resto della divisione di numero diviso divisore = [i]

cambia divisore |di

= numero = divisore

G Primo!|
altiment

il Non primol

ferma lo script

Estensione: Snap! https://snap.berkeley.edu/

Certi problemini sembrano facili ...

Alcuni animali giungono in riva al flume, uno dopo l'altro, per abbeverarsi.
Quando un animale arriva, manda via tutti quelli piu piccoli di lui.

Data la sequenza delle taglie degli esemplari che giungono al fiume,
secondo l'ordine di arrivo, quanti ne rimangono alla fine?

Soluzione piu efficiente (vedi programmi_Python 2.7.9 > animali.py):
A=1[3,9 2, 6, 4, 5, 2, 2]

gquanti = len (i)
rimasti = 1
massimo = A[gquanti-1l]
F l'ultimo arrivato rimane & la sua taglia vale massimo
for i in range (quanti-2, -1, -1):
¥ dal penultimo arrivato (gquanti-2) sino a scendere al primo (0)
2 f A[i] >= massimo:
massimo = A1)
rimasti += 1
“animall rimasti =", rimastli

>>> animali rimasti = 5

* Data una sequenza di interi, anche negativi, calcolare la
somma della sottosequenza di somma massima; due
versioni con diverse complessita, una “quadratica” e una
“lineare”: vedi programmi_Python_2.7.9 > somma_max.py

« Data una sequenza di bit, che rappresenta una partitura
per tamburello (1 = batti un colpo, 0 = pausa), stabilire se e
periodica e, in caso affermativo, trovare il periodo: vedi
programmi_Python 2.7.9 > tamburello.py

« Data una sequenza di N bit (una strada con N lampioni, 1 =
acceso, 0 = spento), si vuol sapere quanti lampioni bisogna
accendere affinché ogni sottosequenza di M lampioni ne
abbia almeno K accesi (1 < K <M < N); due versioni con
diverse complessita: vedi programmi_Python 2.7.9 >
lampioni_1.py e lampioni_2.py

Qualche problema un po’ piu difficile ...

* Ogni persona in un insieme di N da la propria disponibilita
per un intervallo di giorni [da, a] compresi. Devono essere
coperti da almeno una persona tutti i giornida 0 a K — 1,
Impiegando il minor numero di persone: vedi
programmi_Python 2.7.9 > turni.py

« Data una sequenza di N interi (una fila di luci di diversi
colori, codificati con i numeri 0, 1, ..., C — 1), calcolare la
lunghezza della sottosequenza piu corta che contiene
almeno una luce di ciascun colore: vedi codifica in C++
nella cartella programmi_Cpp > luci_di_Natale

« Quanti sono gli alberi binari con N nodi, radice compresa,
che hanno piu nodi nel sottoalbero sinistro della radice
rispetto al destro? Vedi codifica in C++ nella cartella
programmi_Cpp > alberi_ LR

Alcuni programmi nell'lambiente Maple

Nella cartella programmi_Maple sono contenuti quattro file
commentati (sia | worksheet, sia i file in pdf con i risultati):

1) calcolo di: resto, mcd, fattoriale e numeri di Fibonacci, in
forma sia ricorsiva sia iterativa; calcolo del mcm;

2) 1 numeri di Bernoulli;

3) 1 metodi di bisezione e di Erone per calcolare la radice
guadrata, la serie di Gregory-Leibniz per approssimare T,

4) 1l triangolo di Tartaglia; i numeri di Mersenne e |
problema della fattorizzazione.

Il problema della fattorizzazione (in forma decisionale) € uno
dei pochi noti che appartengono a NP, ma non si sa se siano
NP-completi o se appartengano (anche) a P.

Un altro e il problema dell'isomorfismo tra grafi ...

L'amico sconosciuto (Slovenia, 2014)

Aldo dice che € amico di Bea, Clo e Davi,
Clo dice che & amica di Aldo ed Egle,
Egle @€ amica di Clo,

Davi si proclama amico di Aldo e Bea,

e infine Bea @ amica di Aldo e Davi.

I cinque decidono di disegnare un
diagramma di amicizia in cui rappresentano
se stessi con un cerchietto e il rapporto di
amicizia con un tratto.

Ma hanno dimenticato di segnare i nhomi.

Confrontando le amicizie note con il diagramma si scopre che c'@ un'amicizia non menzionata. Che
cosa si puo dire in merito con certezza?

Clo e Davi sono amici.
Clo ha un altro amico o amica, ma non sappiamo chi sia.

Egle ha un altro amico o amica, ma non sappiamo chi sia.

0000

Nessuna delle affermazioni precedenti & vera con certezza.

31

Soluzione.
La risposta corretta € la seconda dall’alto.

Bea o Davi

Davi c Bea

Approfondimenti. Due sono le assegnazioni dei nomi ai no-

di che rispettano la relazione di amicizia data; ovviamente, 1 due grafi che ne risultano sono isomorfi, “hanno la stessa
forma”. Pit precisamente, due grafi sono isomorfi se risultano identici, eventualmente dopo aver rinominato in modo
opportuno i1 nodi di uno dei due (sicché le loro rappresentazioni grafiche saranno equivalenti dal punto di vista topo-
logico); ad esempio, i due grafi piccoli in alto a destra sono isomorfi, ma nessuno dei due € isomorfo col terzo in basso
(indipendentemente dai nomi attribuibili ai suoi nodi). Per inciso, il problema dell’zsomorfismo tra grafi (dati due grafi
arbitrari, stabilire se sono isomorfi) & uno dei pochi conosciuti che appartengono alla classe NP (la classe dei problemi
decisionali per 1 quali non € noto alcun algoritmo efficiente che li msolva, né si sa se esista, tuttavia € noto un algorit-
mo efficiente che verificht le risposte affermative), ma per i quali non é stato dimostrato né che siano NP-complet: (i
problemi “pit difficili” della classe NP: qualsiasi problema in NP pud essere “trasformato”, in modo efficiente, in uno di
essi) né che appartengano alla classe P (i problemi per i quali € noto un algoritmo risolutivo efficiente). Con “efficiente”
s’'intende in tempo di ordine al pii polinomiale rispetto alla dimensione del problema (o, per essere pit precisi, rispetto
alla lunghezza in bit dei dati di input).

Parole chiave: Grafi, isomorfismo fra grafi, problemi NP.

32

Ancora nelllambiente Maple ...

Nella cartella programmi_Maple trovate anche il file (in pdf)
Introduzione ai sistemi dinamici non lineari, che sviluppai
oltre un decennio fa, nel’'ambito del Progetto Problem
Posing & Solving; un tema che potrebbe essere trattato in
un corso sia di Fisica sia di Matematica, corredato di
numerosi problemi risolti con Maple, suddiviso in capitoli:

e un semplice sistema caotico
Il modello differenziale

« |sistemi di Lotka-Volterra

Il sistema prede-predatori
 osclillatori

e il circuito di van der Pol
 biforcazioni di Hopf

33

Un problema dato alla finale Coppa Student Kangourou 2023

Quesito 7 — Piccoli roditori crescono

Studiando I’evoluzione di una popolazione di piccoli roditori in una certa regione, gli scienziati hanno
formulato un modello che spiega [’andamento nel tempo della quantita di esemplari, tenendo conto
dell’arrivo di una specie predatrice che ne limita la crescita. Detta r(t) la quantita di roditori (in
migliaia), funzione del tempo t (in anni), essa ¢ la soluzione dell’equazione differenziale (non lineare)

dr(t)/dt = r(t)/4 — r(t)*/12

con r(0) = 1. Applicando il piu semplice metodo di integrazione numerica (di Eulero, a un passo,
esplicito), con passo h = 0.2, calcolate r(5) e date come risposta le prime due cifre significative del
risultato ottenuto.

Nota: il metodo citato approssima y(x), soluzione dell’equazione dy/dx = f(X, y), con la successione
y(i+1) = y(1) + h-f(x(1), y(1)), dato y(0) e fissato un valore opportuno per il passo h.

(Il quesito e risolto da programmi_Python_2.7.9 > roditori.py riportato
anche nella slide seguente.)

34

La risposta puo essere trovata eseguendo questo programma in Python:

fix, v):

aTe

h =0.2
X 0.0
wvo= 1.0
s range(l, 26)
y += h*f(x, V)
X += h
x' r

La soluzione esatta dell’equazione differenziale data ¢ la famiglia di funzioni
r(t) =3 /(1 + cexp(-t/4))

con c reale (provatelo per esercizio); dalla condizione iniziale r(0) = 1, si determina ¢ = 2.

Ciascuna funzione di tale famiglia tende a 3 per t tendente a +oo (come si puo verificare anche in base
all’equazione data, studiando 1 punti di equilibrio); dunque r(5) = 1.907.

Nota: nell’equazione data, 4 ha come dimensione 1I’anno, 12 le migliaia di esemplari x anno.

Modelli piu accurati devono considerare almeno I’interazione tra le due specie, le prede e 1 predatori,
nel loro habitat naturale; il pit semplice di essi fu proposto nel 1926 dal matematico Vito Volterra...
(s1 veda la mia “introduzione ai sistemi dinamici non lineari”).

Un altro problema della finale Coppa Student Kangourou 2023

Quesito 12 — La crescita della popolazione mondiale

Nel 1995 1l fisico russo Sergei P. Kapitsa propose un modello di crescita nel tempo della popolazione
mondiale p(t) assai aderente a quanto in effetti ¢ avvenuto nella storia dell’umanita, e in particolare
alla crescita demografica degli ultimi secoli. Ecco il modello:

dp(ty/dt = C / (T - t)% + 12)

dove il tempo t ¢ espresso in anni (qui, con “anni”, si intende anni della nostra era, ad esempio 2023),
C = 186 (miliardi di persone x anni), T = 2007 (anni) ¢ T =42 (anni).

Per calcolare numericamente la primitiva p(t) che ci interessa, partiamo dal dato relativo all’anno
1995, in cui il modello prevedeva una popolazione di circa 5.724 miliardi di persone, di poco inferiore
alla stima reale. Poniamo quindi t = 1995.0 e p = 5.724 (miliardi di persone alla fine di quell’anno),
¢ applichiamo la nota regola di integrazione detta “dei trapezi”, procedendo col passo di un anno,
ovvero sommando a p la quantita:

(g(t) +g(t+1.0)/2.0

dove g =dp/dt, e incrementando poi t di 1.0 (ann1), in modo da ottenere in p un’approssimazione della
popolazione alla fine dell’anno t.
Iterando questo calcolo, alla fine di quale anno la popolazione mondiale ha superato gli 8 miliardi?

(Il quesito e risolto da programmi_Python_2.7.9 > popolazione.py
riportato anche nella slide seguente.)

La risposta giusta, 2018, puo essere trovata eseguendo questo programma in Python,
dove non ci siamo premurati di minimizzare le valutazioni della funzione integranda:

g(t):
186 / ((2007 - £)**2 4+ 1764)
h=1.0
t = 1995.0
p = 5.724
i range(l, 25):
p += (g(t) + g(t+h))*nh/2
t +=< h
T, P

In realta, ¢ stato stimato che il raggiungimento degli 8 miliardi sia avvenuto verso la fine dello scorso
anno 2022.

La primitiva esatta che ci interessa ¢ p(t) = (C/t)-arccot((T — t)/t) (verificatelo per esercizio); la
riportiamo nel grafico qui sotto, con 1 parametri sopra fissati, per t che va dall’anno 1700 (dove vale
poco piu di 600 milioni) all’anno 2300. La soglia degli 8 miliardi ¢ superata nel 2018 (dove questa
funzione vale circa 8.09077), in accordo con la nostra simulazione numerica.

37

10 ///
8

| /
| —

1700 1800 1900 2000 2100 2200 2300

Secondo questo modello, la popolazione mondiale superera 1 10 miliardi nel 2042, e nei secoli
successivi tendera a stabilizzarsi a poco piu di 13,9 miliardi (ricordiamo che arccot(x) tende a « per x
tendente a —o0).
Attualmente, con i dati degli ultimi decenni, alcune fonti prevedono il traguardo dei 10 miliardi nel
2050, altre una punta di 9.7 miliardi verso il 2065 seguita poi da un calo a 8.8 miliardi alla fine di
questo secolo XXI: chi avra ragione? Non ci resta che attendere!

38

Partendo dallo scenario di un compito da risolvere
(ovvero da una particolare istanza del problema):

d Algoritmi “efficienti” su grafi (pesati / non pesati)

* Minimum Spanning Tree (Boruvka, Kruskal, Prim-
Jarnik — Dijkstra per cammini minimi)

* Visite in profondita e in ampiezza ...

d Problemi “difficili” su grafi (pesati / hon pesati)

* Travelling-Salesman Problem (di permutazione)

* Min.Vertex Cover e Max.Independent Vertex Set
(due problemi di sottoinsieme, complementari) ...

 Altri problemi “difficili”
* Rectilinear Steiner Tree, Bin-Packing (di partizione),
Knapsack, Multiprocessor Scheduling ... 2

Gli elettricisti — 4 punti

Due elettricisti, Crusca e Primo, devono collegare con cavi elettrici 25 punti luce, disposti come
illustrato nella figura qui sotto, in modo tale che da ciascun punto siano raggiungibili tutti gli altri, ma
senza che si formino anelli (ossia percorsi chiusi), e impiegando la minor lunghezza possibile di cavo
elettrico. L’apprendista Primo pensa che sia un compito difficilissimo. L’esperto Crusca, pero, gli
spiega che basta collegare via via la coppia di punti piu vicini, come si ¢ gia cominciato a fare nella
figura, evitando solo di formare anelli. Completate 1 collegamenti seguendo il consiglio di Crusca.

-3]
°
: —_ @ @
® &
@
& B
® @
> ®

40

Soluzione

La soluzione non ¢ unica. I due segmenti tratteggiati, di stessa lunghezza, chiudono un anello: bisogna
dunque scegliere uno solo dei due per completare la rete elettrica.

L’obiettivo consiste nel collegare 1 punti luce in modo che nessuna porzione di rete rimanga isolata dal
resto, senza creare anelli: in altre parole, considerati due punti luce qualsiasi, il collegamento tra loro,
costituito da uno o piu segmenti di filo, deve essere unico! Inoltre, la somma delle lunghezze di tutti i
segmenti di filo utilizzati deve essere la minore possibile.

41

Se in ogni punto luce immaginiamo sia collocata una lampadina, collegando allora due punti luce
qualsiasi ai morsetti di una batteria si illuminera quell’unico percorso che li unisce, che — si osservi —
puo essere costituito da piu segmenti non allineati (e quindi non ¢ in generale il piu breve costruibile
tra 1 due punti considerati), proprio perché cio che si deve minimizzare ¢ la lunghezza fotale dei
collegamenti.

Una possibile difficolta consisteva nel valutare le lunghezze dei collegamenti: se le misuriamo usando
come unita 1l lato di ciascun quadretto, 1 due segmenti tratteggiati — ad esempio — hanno ciascuno
lunghezza pari alla radice quadrata di 13 = 22 + 32, per il teorema di Pitagora, applicato a un triangolo
rettangolo di cateti 2 ¢ 3 quadretti. Ma dovendo solo valutare se un lato ¢ piu lungo di un altro, non ¢’¢
alcun bisogno di calcolare radici: si possono semplicemente confrontare 1 quadrati. Cosi 1 due segmenti
tratteggiati hanno sicuramente lunghezza minore di 4, perché 4> = 16 > 13. Non era comunque vietato
usare un righello...

Anche questa ¢ informatica!

Il consiglio dell’esperto Crusca corrisponde in realta al ben noto algoritmo di Kruskal, mentre un
procedimento alternativo € noto come algoritmo di Prim, il che dovrebbe giustificare 1 nomi degli
clettricisti.

Come funziona I’algoritmo di Prim? Si parte da un punto arbitrario e lo si collega al punto piu vicino,
poi ad ogni passo successivo si collega un nuovo punto: il piu vicino a qualcuno di quelli gia collegati!

— ... Naturalmente, bisogna dimostrare la correttezza

di questi algoritmi!
42

Algoritmo di Kruskal (1956)

10 10
2. 3. .4 o—0—0
JE
i I
0
® = 06 /\/
L
11 Il P
10 9 7
[] L
8
o o
0 14 0 14
10 10
0 14 0 14

Vedi codifica in C++ nella cartella programmi_Cpp > Kruskal Sembra facile...

ma l'idea giusta inizia col ripartire i punti da collegare in altrettanti insiemi...

43

Qual e il cammino piu breve da Valle Chiara a Fonte Argento?

44

Algoritmo di Dijkstra (1959)

* |a tecnica e “greedy ”: si costruisce un insieme S
di nodi, iniziando col solo nodo di partenza v,

» ad ogni passo, si aggiunge all'insieme S il nodo
“piu vicino™: tra quelli a distanza di un arco da un
nodo di S, considerando I costi per raggiungerli a
partire da v, e toccando soltanto nodi di S

« dopo n — 1 passi, I'insieme S e costituito da tutti
gli n nodi, e sono noti I cammini di costo minimo
da v, a ciascuno degli altri nodi (raggiungibili)

Vedi codifica in C++ nella cartella programmi_Cpp > Dijkstra
45

Algoritmo di Dijkstra

40

Primo passo

46

Algoritmo di Dijkstra secondo passo

A Monte Viola si arriva
anche da Colle Fiorito,
ma 25 + 20 > 35

Si raggiunge
pure Bosco Atro

Migliora il tempo per
arrivare a Punta
Secca: 25 + 20 <50

Algoritmo di Dijkstra terzo passo

Mulino
’ N 30 165 Vecchio 5
35 Mpnte Rio
Viola 30 Freddo
10
20
25 15
. 50 Bosco
0 Valle 5 Colle 35 - Atro
Chiara e
i Fiorito Fonte
\ J Argento
40 __ 15
20 =
Punta
45

Secca
50

48

Algoritmo di Dijkstra

25

Valle
0 Chiara

40)

Monte
3 5 Viola 30

20

Coll 35
25 oLc

Fiorito

50

30

Punta
Secca

quarto passo

Mulino
30 65 Vecchio

5
Rio
Freddo
10

15

15
Bosco
50 Atro s
30 Font
onte
20 75 Argento
45 30

49

Algoritmo di Dijkstra guinto passo

40 ' Mulino
_ 60 Vecchio! 5
Monte Ri
35 0
70 Freddo

25 15

Valle
0 Chiara

Se interessa arrivare a Mulino
Vecchio, possiamo fermarci qui!

Algoritmo di Dijkstra sesto passo

Va]l
ChJara

Mu]mo

Vecchm
Monte
5 Vlola

Bosco

Atro

2 Colle 15

FlOI‘ltO

20

50

30

51

Algoritmo di Dijkstra settimo passo

5
Punta Un solo cammino dal
45 Secca

nodo di partenza a
clascun altro nodo:
“albero”!

Algoritmo di Dijkstra: “"complessita”

* nel caso peggiore, al crescere del numero n del
nodi, Il tempo di elaborazione tende ad aumentare
IN modo proporzionale a n?

* S| puo migliorare utilizzando strutture di dati
opportune; comunqgue e efficiente (e quindi il
problema e trattabile)

e trovare il cammino “piu lungo” tra due nodi, o un
cammino che tocchi una e una sola volta ciascun
nodo: per questi problemi non si conoscono (né si
sa se esistano) algoritmi efficienti in generale!

53

Segnali di fumo (2 punti) (Giappone, 2014)

Lo storico greco Polibio (206-124 a.C.) descrisse un
sistema di comunicazione basato su torri di
segnalazione. Anche in Giappone durante il periodo
degli shogunati fu realizzato un sistema di torri per
comunicare con segnali di fumo in caso di emergenza.
Nella figura il punto rosso indica la sede dello
shogunato.

| punti blu indicano le torri di segnalazione e due punti
sono uniti da un tratto se le due torri sono
reciprocamente visibili. | responsabili di ogni torre
accendono i loro fuochi esattamente un minuto dopo
che hanno avvistato un segnale proveniente da un'altra
torre.

Quanto tempo ci vuole perché una segnalazione in
partenza dalla sede dello shogunato abbia senz'altro
raggiunto anche le piu remote torri dell'impero e tutti i
fuochi siano accesi?

8 minuti 5 minuti 4 minuti 6 minuti

54

Visita in ampiezza

Soluzione.

Per raggiungere anche le pili remote torri dell'impero servono 5 minuti, come si vede nella figura, nella quale sono stati
indicati 1 minuti necessari per raggiungere ogni torre.

Anche questa é informatica! Il quesito proposto € un’istanza del problema di
trovare un cammino di costo minimo da un nodo (dato) a ciascuno degli altri nodi
in un grafo (non orientato e connesso), dopodiché si potra conoscere il maggiore
di tali costi. Per risolvere questo problema in generale esistono diversi algoritmi
efficienti.

Nel nostro caso particolare, tutti gli archi hanno il medesimo “costo” (il tempo
di un minuto) e, in virtd di questo fatto, é sufficiente una wsita in ampiezza:
costruiamo un insieme di nodi, mettendovi inizialmente soltanto quello di partenza
(che rappresenta il punto rosso); al passo t (t = 1,2,...) aggiungiamo all’insieme
tutti i nodi (che ancora non vi sono inclusi) collegati da un arco a qualcuno dei
nodi che gia vi sono inclusi: 1 nodi aggiunti sono precisamente quelli che “distano”
t minuti dal nodo di partenza. All'ultimo passo saranno inclusi i nodi pia distanti,
e 1l valore attuale di t ci dirda quanti minuti essi distano dal nodo di partenza.

Parole chiave e riferimenti: Grafo, cammino minimo, visita in ampiezza.

55

W WD ERE R OO OO

Backtracking: tutti | percorsi da-a in un di-grafo

1 0 4

1
1
2
3
0
O
3
4
1
4
3
4

OWe
o
:

6 percorsi aciclici da 0 a 4

WwhodNDMNE
W W
DS

OO O oo

Vedi codifica in C++, basata sulla visita in profondita

nella cartella programmi_Cpp > percorsi_alternativi

56

Chiusura transitiva: un problema piu semplice

|_\

o.o chiusura transitiva

\

111110

e e 111110
111110

111110

111110

o 111110

e aciclico: falso

O WWNNNRFRPE PP OOOOM
s wdbdhREDAcr OO WONE R

Vedi codifica in C++ dell’algoritmo di Warshall (1962)

nella cartella programmi_Cpp > chiusura_transitiva .

Network (Ungheria, 2014)

La compagnia di telecomunicazioni Grancastoro deve installare antenne
per cellulari sull'lsola dei Castori; vuole costruire una rete molto
affidabile: se un'antenna si guasta, le altre devono poter continuare a
comunicare tra loro.

La figura mostra un'antenna e la sua area di copertura. Quando due aree
si sovrappongono, anche di poco, le due antenne possono comunicare.

Quale fra le seguenti disposizioni funziona anche se si guasta una (ma
non piu di una) antenna qualsiasi?

58

Suggerimento: poiché il grafo € non orientato, basta costruire un
albero di visita a partire da un nodo a scelta e verificare se tutti i
nodi sono stati raggiunti... Questo va fatto dopo aver tolto un arco

ogni volta.

Soluzione.
La risposta corretta e quella in
alto a destra.

Approfondimenti. Il proble-
ma pud essere modellato per
mezzo di un grafo non ortenta-
to: 1 nod: rappresentano le an-
tenne e due nodi distinti sono
collegati da un arco (non orien-

tato) se e soltanto se le due an-
tenne da essi rappresentate possono comunicare direttamente tra loro (cioé le rispettive aree di copertura si sovrappon-

gono). Si tratta allora di stabilire se, partendo da un grafo connesso (cioé ove da ciascun nodo sono raggiungibili tutti
gli altri) e togliendo uno degli archi, il grafo rimane connesso, qualunque sia l’arco eliminato.

Non resta che provare per ognuno degli archi: s1 elimina 'arco 1n questione e si effettua un test di connessione sul
grafo cosi ridotto. Per fare questo test, si pud scegliere un nodo a piacere, costruire un albero di visita (in ampiezza o in
profondita) a partire da esso, e controllare infine se tutti i nodi sono stati raggiunti; rappresentando il grafo con la sua
matrice di adiacenza (simmetrica), un test di connessione richiede un tempo di ordine quadratico rispetto al numero dei

nodi.

Parole chiave: Grafo non orientato, grafo connesso.

Problemi (risolubili) “trattabili”

* Problemi risolublli in tempo polinomiale:

esiste (ed e noto) almeno un algoritmo risolutivo che
richiede tempo polinomiale nella lunghezza dell'input
espressa in bit, e quindi possono essere risolti in modo
efficiente (sempre entro certi limiti).

Esempi:

 ordinare una sequenza arbitraria di n numeri naturali:
esistono vari algoritmi che richiedono un tempo d’esecuzione
della forma an? + bn + ¢, ma anche algoritmi piu efficienti ...

e trovare il percorso piu breve tra ciascuna coppia di nodi in un
grafo qualsiasi; c'€ anche un algoritmo assai compatto, che ha

complessita cubica: Floyd, 1962, stessa idea di Warshall ...

(vedi codifica in C++ nella cartella programmi_Cpp > Floyd)
60

Problemi (risolubili) di fatto “intrattabili”

* Problemi intrinsecamente esponenziali:

gualsiasi algoritmo risolutivo (noto o non noto) richiede
un tempo che dipende almeno esponenzialmente dalla
lunghezza dell'input.

Esempi:

* (piuttosto banali) generare tutti gli anagrammi di una parola o
elencare tutte le mosse per spostare una torre di Hanoi

* decidere se due espressioni regolari (con I'operatore quadrato)
generano lo stesso linguaggio (A. R. Meyer e L. J. Stockmeyer, 1972)

 analizzare il gioco del blocco stradale o della dama n x n.

Il confine tra queste due classi di problemi non e affatto netto: e
una zona misteriosa, dove stanno tanti problemi interessanti ...

61

Ladro chi ruba e chi riempie lo zaino (5 punti)

Un ladro sta svaligiando un negozio di elettrodomestici e naturalmente vuole accumulare re-
furtiva con pit valore possibile, ma ha uno zaino che regge al massimo 82 etti. Nel negozio ci
sono oggetti di 4 tipi e per ciascun tipo ci sono 10 oggetti.

Tipo Peso in etti | Valore in euro
Televisore 80 605
Cellulare 9 65
Microonde 90 100

Hard disk esterno 16 120

e Se lastrategia usata dal ladro per riempire lo zaino e di scegliere sempre I'oggetto piu leggero
che ci sta, qual & il valore della refurtiva che riuscira a portare via?

¢ Se la strategia usata dal ladro per riempire lo zaino e di scegliere sempre I'oggetto d: maggior
valore che ci sta, qual e il valore della refurtiva che riuscira a portare via?

¢ Se la strategia usata dal ladro per riempire lo zaino & di scegliere sempre l'oggetto che ha 1l
maglior rapporto valore/peso che ci sta, qual & il valore della refurtiva che riuscira a portare
via?

® Per ottenere i1l massimo valore della refurtiva, sapete fare meglio?

62

Soluzione Tipo Peso in etti | Valore in euro
Televisore 80 605
Cellulare g 65
Microonde 90 100
Hard disk esterno 16 120

e Se la strategia usata dal ladro per riempire lo zaino e di scegliere sempre l'oggetto p2u leggero
che ci sta, qual & il valore della refurtiva che riuscira a portare via?

9 cellulari, per un valore di 585 euro.

e Se la strategia usata dal ladro per riempire lo zaino € di scegliere sempre l'oggetto di maggior
valore che ci sta, qual e il valore della refurtiva che riuscira a portare via?

1 televisore, per un valore di 605 euro.

¢ Se la strategia usata dal ladro per riempire lo zaino & di scegliere sempre 'oggetto che ha %l
maglior rapporto valore/peso che ci sta, qual & il valore della refurtiva che riuscira a portare
via?

1 televisore, per un valore di 605 euro.

® Per ottenere il massimo valore della refurtiva, sapete fare meglio?

2 cellulari, 4 hard disk esterni per un totale di 610 euro.

63

Problema di ottimizzazione dello zaino
« Knapsack: € un problema “di sottoinsieme”.

 Dati (tutti interi positivi; quelli di pit oggetti uguali
occorrono altrettante volte nelle rispettive liste):

P, peso massimo sopportato dallo zaino,

(P1s .oy pn) € (V1, ..., V), liste di pesi e valori di n oggetti.
* Oblettivo:

determinare un insieme di oggetti il cul peso complessivo sia,
al piu, P e il cui valore complessivo sia 1l massimo possibile.

64

* Un esempio:

P =12
pesi = (1,2, 3,3,5,06)
valori = (2,4,6,6,7,9)

Quindi n = 6 oggetti, non importa in quale ordine...

e Quale risultato da una procedura greedy ?

Se ogni volta scegliamo I'oggetto di maggior valore
possibile, avremo nello zaino gli oggetti 6, 5 e 1.

Il peso complessivo sara6 +5 + 1 = 12 (zaino pieno)
e il valore complessivo 9 + 7 + 2 = 18.

Si puo fare meglio?

65

¢ Piccola parentesi 1: algoritmo greedy

Ad ogni passo, sceglie I'ottimo locale secondo un
certo criterio. Esempio: comporre una somma col
minimo numero di monete. Con quali tagli funziona?

« Con tagli da 25, 10, 5, 1.
48=25+10+10+1+1+1
45=25+10+10

e Con tagli da 25, 11, 5, 1:
48=25+11+11+1
45=25+11+5+1+1+1+1

« Contaglida 25, 12, 5, 1.
48=25+12+5+5+1
45=25+12+5+1+1+1

ottimo
ottimo

ottimo
non ottimo

non ottimo

non ottimo
66

Piccola parentesi 1 (continua): con quali tagli funziona?

Caratterizzare i sistemi monetari per i quali I'algoritmo greedy
funziona e questione irrisolta, se i tagli sono piu di cinque...

Si potrebbero generare, una dopo l'altra, tutte le combinazioni
che compongono la somma data, scartandole non appena il
numero di monete occorrenti supera il minimo finora trovato...

Nella cartella programmi_Python 2.7.9 trovate il programma
monete.py, che calcola in quanti modi si forma un importo,
disponendo a piacere di monete di vari tagli: provate ad
adattarlo al nostro problema!

Due sono le funzioni ivi definite; la seconda, ben piu efficiente,
sfrutta I'idea della programmazione dinamica ...

67

.0

N/

Piccola parentesi 2: programmazione dinamica

2

(R. E. Bellman e G. B. Dantzig, 1956-57)
R8 1 3 7 5 9 11 15 13
R7 0 2 < 6 8 10 12 14
R6 3 5 3 1 7 9 13 11
R5 5 3 < 7 9 0 11 17
R4 3 2 < 6 S 8 10 14
R3 19 15 7 6 8 2 - 5
R2 1 2 5 7 6 3 12 14
R1 15 16 22 15 3 7 9 8

C1 C2 C3 C4 C5 C6 C7 C8
R8 1 3 7 5 9 11 15 13
R7 1a/3d 3s/9d 7s/11la 11a/15d 13s/19d 19s/25d 23s/27a 27a/29s
R8 1 3 7 5 9 11 15 13
R7 la/3d 3s/9d 7s/11la 11a/15d 13s/19d 19s/25d 23s/27a 27a/29s
R6 4a/12d 6s/16d 6s/18d 8s/20d 18s/32d 22s/36d 32s/424 34s/40a

68

Piccola parentesi 2 (continua): giu dall'albero di Natale!

Dalla stella in cima all'albero, scendere fino a raggiungere una delle
campanelle in fondo, in modo da rendere massima la somma dei numeri
attribuiti alle decorazioni toccate lungo la discesa.

N Problema di
P Maximum Sum Descent

N
@/_7 @@ @) Programmazione Dinamica
T 7 2

Codifica (vedi programmi_Python_2.7.9 > discesa.py):

(e}, (7,), (2, 4, €], [10, 8, 8, 3], [3, &, 9, 7, 9]]
len(p)

AT
l

¥ soluzione inefficiente:

def somma(i, 3, =):
if 1 = a-1l: return s
sl = somma (i+l, j, 8 + pl[i+l]I[3])
s2 = somma (i+1l, j+1, s + p[i+l][j+1])
return max(sl, s2)

print somma (0, 0, p[0][0])
soluzione efficiente (attenzione: modifica p)

for 1 in range(a - 2, -1, -1):
for j in range(0, i + 1):

pl1][]] += max(p[1+1]([3], p[i+1][3+1])
print p[0][0]

Zaino ottimo con la programmazione dinamica

* |dea: se in qualche modo abbiamo gia parzialmente
riempito lo zaino, il maggior profitto lo otterremo

comungue massimizzando il valore degli oggetti che
VI pOSsSONno ancora stare, da scegliere tra | rimanenti.

 Ribaltando la prospettiva: supponiamo che la
capacita dello zaino aumenti progressivamente da
1 a P, e ad ognistadio chiediamoci quale sia Il
massimo valore raggiungibile disponendo soltanto
del primo oggetto, o dei primi due, o dei primi tre ...
o di tutti gli n oggetti.

71

* Che cosa dobbiamo fare?

Calcolare tutti 1 numeri M(c, k) perc=1, ..., Peperk=1, ..., n, dove M(c, k) ¢ il
massimo valore complessivo ottenibile scegliendo dai primi k£ oggetti, avendo ¢
come limite superiore al peso complessivo.

— Quanto a strutture di dati, ci servira una matrice M con
almeno P righe e n colonne, oltre adue array p e v
di n elementi ciascuno, per i pesi e i valori.

Quando dovremo decidere se scegliere o meno il k-esimo oggetto, ci chiederemo
innanzi tutto se il suo peso supera c: se si, ovviamente non lo potremo scegliere,
indipendentemente dal suo valore. Altrimenti, lo sceglieremo soltanto nel caso in cui
la sua presenza riesca a migliorare il profitto: dovremo quindi considerare i1l miglior
valore (gia calcolato) col peso limite ¢ — p; e col primi k — 1 oggetti, e aggiungervi il
valore v, per poter prendere di conseguenza la giusta decisione.

— E quindi opportuno prevedere anche una riga 0 e una
colonna 0 nella matrice M ...

72

» L'algoritmo

L’algoritmo usa una matrice di interi M, di P+ 1 righe per n + 1 colonne, dove la
prima riga e la prima colonna (che supponiamo abbiano indice 0) sono inizializzate
col valore O: infatti, se lo zaino non puo contenere nulla o non vi ¢ alcun oggetto,

allora il suo valore (ottimo) ¢ 0.

per o= 1 s s
per k=1, ...,n:
se pi> c allora
M(c, k) — M(c, k-1)
altrimenti
M(c, k) «— max{M(c —px, k—=1)+vi, M(c,k—-1)}

Fatto questo, nell’elemento in ultima riga e ultima colonna, cioe M(P, n), ¢
contenuto 1l valore di una soluzione ottima.

73

* Riprendiamo I'esempio:
P=12, p=1(1,273735,6), v=(466709)

Otteniamo la seguente matrice M, con M(12, 6) = 21.

0 0 0 0 0 0 0
0 2 2 2 2 2 2
0 2 4 4 4 4 4
0 2 6 6 6 6 6
0 2 6 8 8 8 8
0 2 6 10 10 10 10
0 2 6 12 12 12 12
0 2 6 12 14 14 14
0 2 6 12 16 16 16
0 2 6 12 18 18 18
0 2 6 12 18 18 18
0 2 6 12 18 19 19
0 2 6 12 18 21 21

74

« Come risalire agli oggetti da mettere nello zaino?
P=12, p=(,2238,356), v=(466709)

0 0 0 0 0 0 0
0 2 2 2 2 2 2
0 2 4 4 4 4 4
0 2 6 6 6 6 6
0 2 6 8 8 8 8
0 2 6 10 10 10 10
0 2 6 12 12 12 12
0 2 6 12 14 14 14
0 2 6 12 16 16 16
0 2 6 12 18 18 18
0 2 6 12 18 18 18
0 2 6 12 18 19 19
0 2 6 12 18 21 21

75

e Partiamo dall’elemento in basso a destra (che contiene |l
valore ottimo) e, restando sull’ultima riga, spostiamoci a
sinistra, fino a incontrare una variazione di valore:

— tra le colonne 5 e 4: prendiamo l'oggetto 5 e togliamo |l
suo pesoda 12 —- 12 -5=7 e il peso massimo rimanente.
e Risaliamo la colonna 4 fino alla riga 7 e poi spostiamoci a
sinistra, fino a incontrare una variazione di valore:

— c’e subito, tra le colonne 4 e 3: prendiamo l'oggetto 4 e
togliamo il suo pesoda7 — 7 —3 =4 e il peso residuo.

e Risaliamo la colonna 3 fino alla riga 4 e poi spostiamoci a
sinistra, fino a incontrare una variazione di valore:

— c'e subito, tra le colonne 3 e 2: prendiamo l'oggetto 3 e
togliamo il suo pesoda4 —4 -3 =1 e il peso residuo.

e Risaliamo la colonna 2 fino alla riga 1 e poil spostiamoci a
sinistra: il valore varia tra le colonne 1 e O, per cul prendiamo

'oggetto 1 e togliamo il suo pesoda1—1-1=0.
76

Scegliendo gli oggetti 5, 4, 3 e 1, il valore e massimo
e, in questo caso, lo zaino e stato riempito...

Tuttavia, vi sono altre soluzioni ugualmente ottime:
guali? Quella che si trova dipende dall'ordine in cui
si dispongono inizialmente gli oggetti...

e Scriviamo la seconda parte dell’algoritmo:

c—P;, k—n;
finché ¢c>0e £>0:
se M(c, k) # M(c, k—1) allora
¢ scelto 'oggetto k
C «— C — Pk
k—k-1

77

* Un caso particolare: valori uguali ai pesi

Se 1o scopo ¢ quello di riempire lo zaino 1l piu possibile, pur di non superare la
capacita P, basta far coincidere 1 valori degli oggetti con 1 rispettivi pesi: si pensi, ad
esempio, a dei lingotti d’oro di diverse dimensioni. Si provi a risolvere questo
problema, con uno zaino di capacita 150 (unita di peso) e otto lingotti di peso 16, 27,
37, 42, 52, 59, 65 e 95: quali dovranno essere scelti? (Qui si riesce a riempire lo
zaino al massimo del peso sopportato; ma se la sua capacita scendesse a 149, allora
la soluzione ottima lo riempirebbe quasi completamente, scegliendo lingotti tutti
diversi dall’istanza precedente...)

Nota: nella formulazione originaria del problema decisionale
(R. M. Karp, 1972), parlando soltanto di pesi, si chiedeva di

stabilire se lo zaino puo essere riempito esattamente col suo
peso massimo P, cido che equivale a chiedere se I'equazione

pixi+prxo+...+pyx, = P

ha soluzioni in cui ciascuna incognita vale O o 1.
78

— problema di Subset-Sum (... sitrova in crittografia)

Porsi la stessa domanda per un sistema lineare a
coefficienti interi non cambia la complessita del
problema, che viene detto di

programmazione (lineare) intera 0-1

* Una variante: il problema con ripetizioni

Una variante significativa del problema sottintende I’illimitata disponibilita di
esemplari di ciascun tipo di oggetto.

Questo problema, noto come problema dello zaino con ripetizioni, per essere risolto
richiede uno spazio di memoria inferiore, ma I’ordine di grandezza temporale non
cambia. E sufficiente una sola colonna della matrice usata nel caso precedente, e
quindi diciamo che adesso M ¢ soltanto un array di P+ 1 interi...

Ci servira pero un altro array dello stesso formato...
79

» Complessita rispetto al tempo

Anche per questa variante, si giunge a un algoritmo
che richiede un tempo di esecuzione dell’'ordine di
n-P (per i due cicli annidati), che non e polinomiale
nella dimensione dell'input, costituito da circa

(n +1)-1ogy, P + n-10gs Vinax

bit. Quando l'input € una lista di numeri e il tempo di
esecuzione e limitato da un polinomio nel maggiore di
tali numeri e nella lunghezza della lista, si parla di
algoritmi pseudo-polinomiali.

Il problema dello zaino e NP-hard ma non strongly!

80

More Candy (Canada, 2013)

0000000
elle]leflafe]a]

You can connect a circle and a square with the same letter in it by clicking on them.
Try to make as many connections as possible, without crossing the lines!

Answer

@.QQ@Q.

81

Il problema della longest common-subsequence

Vedi programmi_Python_2.7.9 > Ics_fb.py (questo) e Ics_pd.py (il successivo)

Risolve il problema LCS con la forza bruta
Complessita' rispetto al tempo in O(27(m * n))

def lcs(X, ¥, m, n):
ifm=0 or n==0:
return 0
elif X[m-1] Y[n-1]:
return lcs(X, Y, m-1, n-1) + 1

Ty
o

return max(lcs(X, ¥, m, n-1), lcs(X, ¥, m-1, n))

S1 = "BDCABA"™
52 = "ABCEDAEB"™
print "lunghezza della LCS =", lecs(S1l, 52, len(S5l), len(52))

Una soluzione piu efficiente per il problema della Ics

Risolve il problema LCS con la programmazione dinamica
Complessita' rispetto al tempo in O(m * n)

def Icay (X, XY, = n):
alloca la matrice L di (m+l) righe per (n+l) colonne
e assegna 0 a tutti i suoi elementi
L= [[0]*(n+l) for i in range (m+l)]

L[i][J] contiene la lunghezza della LCS di X[0..i-1l]) e Y[0..3-1]
for i in range(l, m+l):
for 3 in range(l, n+l):
if X[i-1l) = Y[3j-1]:
L[1]([3]) = L[i-1][53-1] + 1

1]

lse

1

L[{1](3] = max(L[i-1](3], L[1]1(3-1])

L[m] [n] contiene la lunghezza della LCS di X[0..n-1] e Y[0..m-1]
for i in range(m+l):

for j in range(n+l): print L[i]([]],

print "\n"
return L[m] [n]

S1 = "BDCABA"
S2 = "ABCBDAB"
ris = 1lcs(S1l, S2, 1len(Sl), len(S2))
print "lunghezza della LCS =", ris

o

> O O

84

Il problema del commesso viaggiatore (TSP)

[1,4,3,2,5,6, 1] con costo 34;
[1, 2,5,6, 4,3, 1] con costo 35;
[1,3,2,5, 6, 4, 1] con costo 42.

Uno dei primi due indifferentemente
(o il suo “rovescio”) costituisce la
soluzione di questa istanza del
problema.

Non si sa se sia intrinsecamente esponenziale, ma finora non
si e trovato alcun algoritmo efficiente per risolverlo in generale!
85

* In generale, nessun algoritmo di approssimazione,
ma algoritmi spesso praticabili

1954: Dantzig, Fulkerson e Johnson, su 42 citta degli
USA: programmazione lineare (Dantzig, 1947)
1962: Held e Karp: progr. dinamica (Bellman, 1957)
miglior tempo di esecuzione nel caso peggiore:
O(n?-2"), decisamente meglio di O(n!),
ma anche lo spazio cresce esponenzialmente con n
1963: Little et al.: branch-and-bound (Land e Doig, 1960)

* Casi particolari

TSP metrico: C(i,]) = C(l,k)+C(k,])) VI, k
algoritmi di approssimazione (con fattori 2, 3/2)

TSP euclideo: 1 nodi sono punti del piano, | costi le distanze
algoritmo esatto in tempo sub-esponenziale

86

TSP: un esempio con grafo completo, metrico (e simmetrico)

Tour ottimo:
[1, 2,5, 3,4,1] concosto 39
(In questo piccolo esempio, funziona

persino l'algoritmo greedy, ammesso
che il nodo di partenzasia2,305...)

| tanti algoritmi studiati per il TSP
“funzionano bene” nella maggior
parte delle usuali applicazioni ...

| “casi peggiori” non sono poi
cosi frequenti nella realta!

Si vedano i piu recenti successi al sito http://www.tsp.gatech.edu/

87

http://www.tsp.gatech.edu/

TSP: I'algoritmo piu semplice (anche su grafi orientati)

TSP (percorso_corrente, costo_corrente):
i < ultimo nodo di percorso_corrente
non_visitati < lista det nodi del grafo eccetto quelli elencati in percorso_corrente
se non_visitati contiene almeno un nodo allora
per ogni j contenuto in non_visitati e tale che esistal’arcodaiaj
¢ < costo_corrente + C(i, j)
(*) sec < costo_minimo allora
tentativo <— percorso_corrente + j (aggiunto come ultimo)
TSP (tentativo, c¢) // chiamata ricorsiva

altrimenti
/I non_visitati € vuota, ossia percorso_corrente contiene tutti i nodi del grafo

se esiste I'arcoda i a 1 e costo_corrente + C(i, 1) < costo_minimo allora
cammino_minimo <— percorso_corrente + 1 (aggiunto come ultimo)
costo_minimo <«— costo_corrente + C(i, 1)

C = matrice dei costi (+o = assenza di arco)

cammino_minimo <« [1]
COSto_minimo <— +o

TSP ([1], 0)

test (*): puo evitare che si esplorino proprio fuifi i possibili percorsi...

Dove Installare le torrette di avvistamento?

89

Problema di minima copertura per nodi

* Minimum Vertex Cover: problema “di sottoinsieme”.

e Dati:

un grafo semplice, non orientato, non pesato, privo di cappi,
connesso — puo essere rappresentato da una lista di coppie
(u, v) con u < v, denotando gli n nodi con i numerida 1 a n.

* Oblettivo:

determinare un insieme di nodi di cardinalita minima tale che
ogni arco del grafo abbia in tale insieme almeno uno dei due
nodi estremi.

90

* Un primo algoritmo greedy

|dea: per costruire I'insieme copertura X (inizialmente vuoto),
ad ogni passo scegliamo un nodo v di grado massimo,
aggiungiamo v a X, e togliamo dal grafo sia v sia gli archi
che hanno un estremo in v (e anche gli eventuali nodi che
rimangono isolati) ...

Al primo passo abbiamo
due alternative: 0o Co H
(con 4 archi incidenti).

Scegliamo H ...

91

Al secondo passo, | hodi
di grado massimo (3)
sono quattro: K, C, D, I.

Scegliamo K ...

Al terzo passo restano
due alternative: D e I.

92

Partendo con H, qualunque successiva scelta, a parita di
grado massimo, porta a una delle due coperture minime.

Ma scegliendo inizialmente C e poi B (di grado 3)...

— Non sempre funziona, anzi non e nemmeno un algoritmo
di approssimazione con fattore costante: nei casi pessimi, il
rapporto (num. nodi scelti / num. nodi ottimi) tende a crescere
(in modo logaritmico) allaumentare del num. di nodi del grafo.

93

* Un secondo algoritmo greedy

ldea: per ogni arco, almeno uno dei due nodi estremi deve
stare in una copertura minima. Quindi, per costruire l'insieme
X, ad ogni passo scegliamo (a caso) un arco, diciamo quello
tra 1 due nodi u e v, aggiungiamo a X sia u sia v, e togliamo
dal grafo u, v e ogni arco incidente suuosuv ...

In questo esempio,
nessuna scelta porta a
una soluzione ottima...
e se siamo sfortunati
prendiamo tutti | nodi!

94

In generale, nel caso peggiore, la copertura generata e
grande il doppio della minima: e dunque un algoritmo di
approssimazione con fattore costante 2.

Ad esempio, nel caso di K, sono presi tutti I 2n nodi,
mentre le due coperture minime ne contengono n.
Conn=3:

Nota: si tenga presente che su qualsiasi grafo bipartito

Il problema e risolubile (esattamente) in modo efficiente.

95

e Abbinare I due criteri, scegliendo un arco non a caso, ma
con la massima somma dei gradi dei due nodi estremi?
Nel caso di K, non vi sarebbe alcun beneficio!

e Idea per trovare una soluzione ottima: modifichiamo Il
secondo algoritmo greedy, calcolando anche che cosa si
ottiene aggiungendo a X o soltanto u o soltanto v,
tenendo presente che, quando si aggiunge uno solo dei
due, si devono per forza aggiungere nel contempo anche
tutti i nodi adiacenti all’altro.

Ad esempio,
scegliendo H ed
escludendo C,

e necessario
Includere D, A, K.

96

Un algoritmo per ottenere una soluzione ottima

« Se G e privo di archi, allora restituisce l'insieme vuoto. Fine.
« Altrimenti, sia (u, v) un arco di G, arbitrariamente scelto;
ricorsivamente, risolve tre problemi (possibilmente in parallelo):

1. X<—{w](w, u)eunarcodi G} e sia G, il grafo che si ottiene da
G togliendovi i nodi in X e gli archi su di essi incidenti; sia X, la
soluzione trovata quando e dato Gg; infine, X; «— X; U X.

2. X—{w](w,v)eunarcodi G} e sia G, il grafo che si ottiene da
G togliendovi I nodi in X e gli archi su di essi incidenti; sia X, la
soluzione trovata quando e dato G,; infine, X, «— X, U X.

3. Sia G; il grafo che si ottiene da G togliendovi i nodi u e v e gli
archi su di essi incidenti; sia X; la soluzione trovata quando e dato
G,; infine, X5 — X3 U {u, v}

* Restituisce l'insieme di cardinalita minore tra X;, X, e X;. Fine.

97

» Complessita rispetto al tempo

Si dimostra che, se k e il numero di nodi della minima
copertura, allora la profondita a cui giunge l'algoritmo
ora descritto e, al piu, k — la complessita rispetto al
tempo presenta un fattore 3k,

In effetti, il problema e NP-hard.

o E un caso particolare di minima copertura di un
iInsieme (Minimum Set Cover): basta considerare, per
ogni nodo, l'insieme degli archi su di esso incidenti e,
come “universo’, I'insieme di tutti gli archi del grafo.

Minimum Set Cover e equivalente al minimo insieme

dominante (Minimum Dominating Set).
98

« Come ricondurre efficientemente MDS a MSC?

Per ogni nodo v, consideriamo l'insieme costituito da v e tutti

| nodi adiacentiav ...

{A, C, K} {B,D,H,I}
{C,A,D,H,K} {D,B,C E}
{E,D,I {F,H, 1}
{G,H,K} {H,B,C,F,G}
{1,B,E, F} [K,A C,G}

Qui ci sono ben 8 coperture di soli
tre sottoinsiemi (2 sono evidenziate
In rosso e in verde, rispettivamente).
Nota: nessuna copertura € “esatta’.

Provate a ricondurre Min. Set Cover a Min. Dominating Set.

99

“Complementare™ massimo insieme indipendente

Trovare un insieme di nodi di cardinalita massima
che, a due a due, non sono collegati da un arco.

Se X e un insieme di nodi, sono equivalenti:

« X € un insieme indipendente

 ogni arco incide su al piu un nodo € X

e ogni arco incide su almeno un nodo ¢ X

* il complemento di X e una copertura per nodi

— un massimo insieme indipendente e
complemento di una minima copertura per nodi.

100

Considerando poi il grafo complementare ...

Un insieme indipendente e costituito dai nodi di un
sottografo completo (cligue) nel grafo complementare.

Maximum Maximum Clique
Independent (nel grafo
Vertex Set complementare)

101

Algoritmi esatti

Se X e un massimo insieme indipendente, allora,
per ogni nodo v del grafo, delle due I'una: o v
0 almeno uno dei suoi adiacenti appartiene a X ...

— per tutti i citati problemi “difficili” sui grafi, si puo
pensare di risolvere, ricorsivamente e possibilmente
In parallelo, due o piu sottoproblemi di dimensione
ridotta, e poi confezionare una soluzione esatta
utilizzando una di quelle dei sottoproblemi che
presenti determinate caratteristiche

— tuttavia, Il tempo cresce esponenzialmente col
numero di nodi ...

102

d Puzzle semplici da programmare (con backtracking)
* Una soluzione, se c’é, é tutta contenuta nello “stato finale”,
non nella sequenza di mosse per raggiungerlo.

* Per evitare di incorrere in cicli, se c’'e questo pericolo, basta
lasciare nello stato corrente una traccia del “percorso” fatto
(che alla fine indichera la soluzione trovata).

Esempi (trovare una soluzione, se c'e, oppure tutte ...):

* completamento di uno schema di Sudoku (anche come
Istanza di Exact Cover Set o, In parte, con tecniche ad hoc)

* puzzle con tessere a incastro (ad es. polimini ...)

* disegno di un giro di cavallo (aperto o chiuso) su scacchiera
Nnxn o mxn, oppure di un percorso per uscire da un labirinto

103

=3

=3

[

=3

o

R4

R5

R&

=3

=1

Fi

oo

=4

=1

Uno schema di Sudoku assai difficile

ErIEL

16
89

1561156

3789 89

146]156]456]156
79 |789]789]78

167 56

89

Shss| 312

136]156]356]156
79 |789]789]78

T4 2]

69
16 236 367

8 797
236| 56 235 36
9 [79]679] 78

246] 13
B l678}75° &7

126
789

5

346
789

123
467

256 156
15833°| 4

69 i 7 135

689
461 12 ([124(13
79| 34 1169

69
2341245| 356
8 /1689

89
24 12
67 g [138

2451 3|22 |9

12
46

24 11241124
96 158 158

2317911 357

23
47

816 245|135

* Intersezione tra
sesto riquadro e C7:
Il numero 3 non
appare altrove in C7

e quindi 3 si puo
cancellare dalle altre
caselle del sesto
riquadro (R4C9, R5C9
e R6C9) ... Ma poi?

“The Sudoku Susser”
qui si arrende, e lo
risolve soltanto con la
“forza bruta”!

* Per trovare una soluzione di uno schema S o concludere che non ne esistono:

funzione risolvi lo schema S
se in S esiste una casella dove non puo stare alcun numero
allora termina con "insuccesso";
altrimenti
se in S non esiste alcuna casella dove possano stare almeno due numeri
allora
stampa lo schema S;
termina con "successo";
altrimenti
sia RiCj una casella di S in cul possono stare almeno due numeri; (%)
per ogni numero N che puo stare in RiC]
fai una copia S' dello schema S;
lascia soltanto N nella casella RiCj di S' e cancella N dalle
altre caselle di stesso riquadro/riga/colonna (e, ricorsivamente,
ogni volta che rimane un solo numero in una casella, cancellalo
dalle altre caselle di stesso riquadro/riga/colonna);
se risolvi lo schema S' termina con "successo"
allora termina con "successo";
termina con "insuccesso";

S1i osservi che si tratta di una funzione con un effetto collaterale: la stampa
della soluzione trovata!

(*) Per tentare di rendere minimo 1l numerc di tentativi, converrebbe scegliere
una delle caselle col minor numero (> 1) di possibilita - ma non & garantito!

* Per trovare tutte le soluzioni di uno schema S:

procedura stampa le soluzioni dello schema S
se in ogni casella di S puo stare almeno un numero

allora
se in S non esiste alcuna casella dove possano stare almeno due numeri
allora
stampa lo schema S;
altrimenti
sia RiCj una casella di S in cul possono stare almeno due numeri; (*)

per ogni numero N che puo stare in RiCj
fai una copia S' dello schema S;
lascia soltanto N nella casella RiCj di S' e cancella N dalle
altre caselle di stesso riquadro/riga/colonna (e, ricorsivamente,
ogni volta che rimane un solo numero in una casella, cancellalo
dalle altre caselle di stesso riquadro/riga/colonna);
stampa le soluzioni dello schema S';

Questa definizione e ancora piu semplice di gquella della precedente funzione!
(*) Per tentare di rendere minimo 1l numero di tentativi, converrebbe scegliere
una delle caselle col minor numero (> 1) di possibilita - ma non e garantito!

* Come dice Jean-Paul Delahaye, gquesto procedimento, a mano,
“non e praticabile, perché richiederebbe una pazienza sovrumana’.
Almeno nell’ambito del Sudoku tradizionale, “il metodo piu efficiente
per una macchina € il piu faticoso per un essere umano”.

Exact cover problem

* Problema di “esatta copertura” di un insieme (strongly NP-hard):

un esempio.
Se possibile, scegliere degli insiemi tra

guesti otto, in modo che sia preso una e

@ una sola volta ciascun elemento di S.”

600 L
S

oQ D OO0 oTw

OO0OO0OO0OO0OO0ORE B
OO0OO0ORrRrRFRLRPFRPROO N
OO0OFRPROOFROF, W
ORrRRFROFRORLRO bH
PR ORFRPORRERO O

Sudoku come exact cover problem ...

* Un puzzle di Sudoku puo0 ricondursi a un’istanza di tale problema.
Ad esempio, nel caso 4 x 4:

| cell constraints | row constraints |column constraints| block constraints|
/1 2 3 4 |1t 2 3 4 |1 2 3 4 |1 2 3 4 |
| 1234123412341234 | 1234123412341234 | 1234123412341234 | 1234123412341234 |

SR R A I

.. iIn R3C4 puo stare il 2; se lo fissiamo:

23234 . |
» tale casella non e piu occupabile,
13|134 * nella terza riga c'¢ il 2,
* nella quarta colonna c’e il 2,
123 nel quarto riquadro c’e il 2.

= =N
QO N[5 [
N

12|12 Quante righe ha questa matrice?

* Nel caso 4 x4 (k? x k?, con k = 2):

| cell constraints | row constraints |column constraints| block constraints|
/1T 2 3 4 |1 2 3 4 |1 2 3 4 |1 2 3 4 |
| 1234123412341234 | 1234123412341234 | 1234123412341234 | 1234123412341234 |

S R AR I

342 | 1 | 1 | 1T [
| e | | | |

Matrice di bit, con 64 righe (quindi quadrata, ma € un caso!) ...
Ogni numero fissato nello schema iniziale esclude tuttavia 3 righe!

* In generale: matrice di bit, con 4-k* colonne e kb — (k? — 1)-n righe,
se n sono I numeri scritti nello schema iniziale;

ciascuna riga contiene comungque quattro 1.

Nel Sudoku classico, k = 3; ma risolvere Sudoku (k) € NP-hard ...

* Problema: determinare un sottoinsieme di k* righe che presentino
esattamente un 1 in ciascuna colonna.

... € metodi per risolverlo

* Knuth: Algorithm X per exact cover problem, basato su back-
tracking e realizzato con una tecnica particolare (dancing links),
e piuttosto efficiente per istanze di ragionevole dimensione.

Donald E. Knuth, Stanford University, 2000: “Dancing Links”
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.qgz

* Realizzato in Python (ma usando sets anziché liste bidirezionali
circolari) e applicato al Sudoku 9 x 9, richiede qualche centesimo
di secondo, al piu alcuni secondi per i puzzle piu difficili.

Ali Assaf, 2013: “Algorithm X in 30 lines!”
http://www.cs.mcqill.ca/~aassaf9/python/algorithm x.html

110

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
http://www.cs.mcgill.ca/~aassaf9/python/algorithm_x.html

* Per non perdere lo spirito del gioco, si possono combinare
backtracking e strategie logiche elementari, facilmente calcolabili:

I'efficiente programma di Norvig, scritto in Python, e basato su
due funzioni mutuamente ricorsive.

Peter Norvig, 2011: “Solving every Sudoku puzzle”
http://www.norvig.com/sudoku.html

* In altri interessanti articoli, Algorithm X e spiegato, realizzato e

applicato a diversi rompicapi. pentamini e loro varianti (Kanoodle),
quadrati latini, Sudoku e creazione di nuovi schemi iniziali ...

Andrzej Kapanowski, “Python for Education: The Exact Cover Problem”,
The Python Papers 6, 2 (2011)

http://o|s.pythonpapers.org/index.php/tpp/article/view/227

David Austin, AMS, 2015: “Puzzling Over Exact Cover Problems”
http://www.ams.org/samplings/feature-column/fcarc-kanoodle

Team # 3140, “The Application of Exact Cover to the Creating of Sudoku Puzzle”
http://www.math.utah.edu/~yzhang/teaching/1030/Sudoku.pdf

111

http://www.norvig.com/sudoku.html
http://ojs.pythonpapers.org/index.php/tpp/article/view/227
http://www.ams.org/samplings/feature-column/fcarc-kanoodle
http://www.math.utah.edu/~yzhang/teaching/1030/Sudoku.pdf

Un programma semplice per costruire schemi

* Per creare uno schema iniziale che ammetta una e una sola soluzione:

disponi "a caso" alcuni numeri in uno schema S, inizialmente vuoto;
stampa le soluzioni dello schema S;

finché lo schema S non ha alcuna soluzione
modifica lo schema S, togliendo un numero da una casella;
stampa le soluzioni dello schema S;

finché lo schema S ha piu di una soluzione
sceglli tra queste una soluzione, sia essa S';
modifica lo schema S, aggiungendo 1n una delle caselle vuote
11l numero che sta nella corrispondente casella di S'; (*)
stampa le soluzioni dello schema S;

(*) Se S' fosse la sola soluzione che ha tale numero 1n quella casella,
allora al passo successivo si otterrebbe 1o schema desiderato!
Ovviamente, anziché "stampare" le soluzioni e sufficiente calcolarne 11
numero e, quando sono piu di una, ricordarne una soltanto!

Un puzzle con | dodici pentamini e un tetramino
... ma bicolori! Quante mai saranno le soluzioni?

Henry Ernest Dudeney, “74. The broken chessboard”, in “The Canterbury
Puzzles”, London: William Heinemann (1907), pp. 90-92, 174-175

113

| dodici pentamini e le loro 63 diverse posizioni

;?||_gﬂll1'u|.l..+-|ﬂ

U

.IDﬂ'I I'E

Sei pentamini devono essere colorati su entrambe le facce!

114

Puzzle risolto da uno del primi programmi con backtracking

Dana S. Scott, “Programming a combinatorial puzzle”, Technical Report No. 1
(1958), New Jersey: Department of Electrical Engineering, Princeton University
(Il programma fu realizzato con l'aiuto di Hale F. Trotter.)

Le soluzioni diverse sono 65,

_ trovate dal programma di Scott e
Trotter in circa 3.5 ore:
19 con X centrato in (2, 3);
‘ 20 con X centrato in (2, 4),

26 con X centrato in (3, 3) e
P non ribaltato (per evitare di

contare due volte le soluzioni
simmetriche rispetto alla

direzione NW-SE).

115

Per ciascuno di qguesti tre casi:

e ognuno degli altri 11 pezzi deve essere
collocato una e una sola volta,

* ognuna delle 55 caselle rimaste libere deve
essere occupata da uno e uno solo di essi.

116

* Tre distinte istanze del problema
di “esatta copertura” di un insieme

e Struttura dei dati:
una matrice di bit con 66 colonne:

11 i pezzi (collocato X) e
55 le caselle rimanenti:

_u)

una riga (con esattamente sei 1)

. per ogni collocazione ammissibile
di ciascuno degli 11 pezzi sulla

scacchiera “bucata”

* Sia ciascun pezzo, sia ciascuna casella devono essere
presi una e una sola volta, e dunque ad ogni sottoinsieme
costituito da 11 righe, che presenti esattamente un 1 in

ciascuna colonna, corrisponde una soluzione. .

Se qui si aggiunge il tetramino
guadrato al centro, NON si ottiene
una soluzione del puzzle di
Dudeney, anche potendo ribaltare
| pezzi della scacchiera; infatti ...

-l
as o

——

D’altronde, Dudeney NON richiede che il tetramino quadrato
sia al centro — e nella sua soluzione non lo e!

Generalizzando, il problema con i dodici pentamini in tinta unita
e Il tetramino quadrato in una qualsiasi collocazione

ammette 16146 soluzioni diverse nel quadrato 8 x 8;

si veda: Donald E. Knuth, “Dancing Links”, 2000

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

118

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Altri puzzle “onerosi”. comporre rettangoli con i 12 pentamini

Rettangolo 6 x 10

Colin B. Haselgrove, Jenifer Haselgrove, “A computer program for pentominoes”,
Eureka 23, 2 (1960), Cambridge, England: The Archimedeans, pp. 16-18

John G. Fletcher, “A program to solve the pentomino problem by the recursive
use of macros”, Communications of the ACM 8 (1965), pp. 621-623
http://www.cs.virginia.edu/~skg5n/fletcher.pdf

2339 diverse soluzioni,
trovate dal programma
di Fletcher in circa 10
minuti!

http://www.cs.virginia.edu/~skg5n/fletcher.pdf

Rettangolo 5 x 12

1010 soluzioni

L
Pl |
Bl |

Rettangolo 3 x 20 Soltanto 2 soluzioni: qual e 'altra?

Comporre un quadrato con 45 pentamini Y

Una singola soluzione fu trovata da Jenifer Haselgrove: “Packing a square
with Y-pentominoes”, Journal of Recreational Mathematics 7 (1974), p. 229.
La lista di tutte le 212 soluzioni € di Donald E. Knuth (“Dancing Links”, 2000)
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

92 solutions, 14,352,556 nodes, 1,764,631,796 updates 100 solutions, 10,258,180 nodes, 1,318,478.,396 updates

2() solutions, 6,375,335 nodes, 806,699,079 updates (solutions, 1,234,485 nodes, 162,017,125 updates

http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz

Con ognuno dei 12 pentamini si puo realizzare una
tassellatura periodica del piano ...

Tassellatura periodica:
sl ripete lungo due
direzioni indipendenti

— Si puo individuare un
parallelogrammo periodico

Uscita dal labirinto (se c’e): la prima o una migliore

9 10
E L E S EEEEEE EEEEEEEEE: E L E
F.X..#.#.# #.xX00#.#.# #.x00#.#.# F.X..#.#.#
i N I N I H.fot. . #. 4 . #of . #.4# fHo#f . #.#.#
¥..#...#.# ¥..#o000#.# #..#000#.# foo#...#.#
FoEHHEE. . F #.###H#oo0k #.4##4#H#000% fok#t#H. . . &
CCFLLHEHELH o F. L HEHOH ¥ HEHOH# OO#..#H##.#
FHEFHF. . F FHEH#.HF. .OF ###.##0004%# FHEFHF. . F
... .%#.... ¥....%#..00 #....#0000%#....
E L E S EEEEEE EEEEEEEEE: E L E
E-S-N-W E-W-S-N S-E-N-W
13 passi 17 passi 6 passi

Cambiando l'ordine delle quattro direzioni, la soluzione trovata
puo essere diversa.

Versione ottima: si provano tutte per ottenere una delle piu breuvi.

Vedi codifiche in C++ nella cartella programmi_Cpp > labirinto
123

Tante variazioni sul tema del labirinto ...
Erase walls (Slovacchia, 2017)

The maze consists of empty fields (white squares) and walls (gray squares).
We can move from one empty field to the adjacent empty field in the horizontal or vertical direction
(not diagonally).

@ Select (by clicking) as few walls as possible which should be
demolish in order to enable moving from the bottom left corner

to the top right corner of the maze.

The minimum number of walls that needs to be demolished is 3.

A systematic way to solve this problem is by marking each individual cell with 'the number of walls
that needs to be demolished in order to reach it'. We can start with the bottom left cell, followed by
the other cells in the first column.

Since the first cell (bottom left) is the starting position, we can mark it with 0. Next, we look at the

second cell (the cell immediately on top of the first cell), followed by the next cell, and so on until all
the cells in the first column are marked. 124

In each step, if the cell is a wall, we increase the number from the previous cell by one and mark it,
otherwise we mark it with the same number.

0 0 0

Then we look at the next column. This time, we need to look at both the cell underneath it and the
cell to the left of it. We select the minimum number from those two cells, and if the cell is a wall, we
increase that number by one and mark it, otherwise we mark it with the same number.

@ @ @
1

125

Take note that after marking the cells, it is important to check the cells again from the opposite
direction (in this case, from top to bottom, and from right to left), and overwrite the mark with a
lower number if it is possible. Sometimes an overwritten cell will affect other adjacent cells as well,
so it is important to check several times until no mark needs to be changed further. In the following
pictures, the cells that have been overwritten are highlighted in yellow.

2|2(3]3 ® [2/2/3]3 ® 2/2/3[/3|4]s5]|@
1 BE | (12 2 |2 P 112 2] 23 a5
(1 |28 = R [[R 2 2 [
(1 {1 [2]3] [1[1]2]s B A BEAE
o [t]2] 2| o [2] 2 | a2 l2] 2 3] 2 |3

Finally, after all the cells have been marked, we can see that the final cell (top right cell) is marked
as 3. This means that to reach the top right corner, a total of 3 walls have to be demolished.

Searching for a path in a maze is a known informatics problem. This task uses ideas from other
similar tasks, but adds an additional requirement which is to demolish as few walls as possible.

Answering this task systematically requires algorithmic thinking by scanning the cells one by one
from the starting position. Marking the all the cells produce an array that contains valuable
information: the number of walls needed to be demolished to reach each cell. In computer science,
an array is a data structure consisting of a collection of elements, such as values or variables.

126

d Puzzle un po’ piu complicati ...

* Una soluzione, se c’e, consiste nella sequenza di mosse che
ha portato a uno stato finale, magari gia noto, ma dal quale
non puo essere dedotta.

* Talvolta non si rischia di cadere in cicli (ad es. se le pedine
non possono retrocedere o se ne e tolta una ad ogni mossa)

* ... ma spesso invece occorre mantenere una “lista” degli stati
toccati lungo il percorso fatto ...

* VVolendo poi trovare tutte le soluzioni piu brevi, oltre a forzare
Il backtracking, occorre mantenere un “insieme di soluzioni”
(ciascuna soluzione e una “lista di stati”):

- quando e trovata una soluzione di pari lunghezza, e aggiunta

alle altre;

- Se e trovata una soluzione piu breve, rimpiazza tutte le altre.
127

A prua e a poppa
W. W. Rouse Ball (1892), Sam Loyd (1914)

128

3|4 E
6| 7|8
S.

Soluzione in 46 mosse, particolarmente elegante per la sua simmetria,
trovata da H. E. Dudeney nel 1898:

1-1-2 0 3-3-0 0 6 7 1-1 0 2 5 3-3-4-1-7-8-2 0
2 8 71 4 3-3-5-2 0 1-1-7-6 0 6 3-3 0 2 1-1 O

In 46 mosse, numero minimo, ve ne sono altre 2475 che iniziano con 1.
(Le 75 soluzioni piu lunghe che iniziano con 1 richiedono 58 mosse.)

129

d Giochi per due ...

Come “risolvere” un gioco tra due avversari
(sufficientemente semplice, ad esempio il tris
O una sua variante, vedi M. Gardner)

Come realizzare un gioco tra due avversari
fermando I'analisi a una certa profondita
Come determinare quale dei due avversari ha
la strategia vincente in un gioco combinatorio
Imparziale (di vario genere: NIM, il gioco di
Euclide, Babylone ...)

Giochi di altro tipo, ad esempio Master Mind:
come programmare il ruolo di solutore ...

130

NIM (Charles L. Bouton, 1901)

« Aturno, ciascuno dei due giocatori prende guanti flammiferi
vuole (almeno uno) da una sola delle file in cui sono ripartiti.
* Vince chi prende per ultimo.

Scriviamo in binario il numero di flammiferi in ciascuna fila e
calcoliamo l'even parity bit per ogni colonna di cifre binarie:

[TTTTTT
[TTTTTTT]
CTTTTTTTTTTIT taeo

Per vincere, bisogna ridurre a 0 tutti i bit di parita ...

e
R OO
O oo
R RO

131

Qui chi gioca ha la possibilita di vincere; tre le mosse “giuste’

* togliere 4 fiammiferi dalla prima fila, oppure
* togliere 4 fiammiferi dalla seconda fila, oppure
* togliere 12 flammiferi dalla terza fila.

0100 1 000 1 000
1 001 0101 1 001
1101 1101 0 001
0 000O 0 00O 0 000O

Se nella prima fila vi fossero stati 6 flammiferi anziché 8,
allora una soltanto sarebbe stata la mossa giusta: quale?

132

Attenzione ai giochi ...
« infiniti: Pong Hau K'i, Picaria ...
* in cui lo stesso giocatore puo sempre vincere: Kayles ...
* in cui entrambi i giocatori sono “dummy”: Babylone-one ...

13 gettoni 10 mosse

13=8+4+1=1101, — vince il secondo (idem con 12)

— tolto I'ultimo bit, se i bit 1 sono pari vince il secondo,
altrimenti vince il primo, comungue muovano: “ininfluenti”!
— sequenza del vincitore non periodica (Prouhet-Thue-Morse)

... da non confondere col “gioco di Grundy” (1939). -

Un gioco infinito: Pong Hau K|

« Aturno, ciascun
giocatore sposta una
delle pedine del proprio
colore lungo un lato,
sino al vertice libero.

* Vince chi riesce a

impedire all’avversario
gualsiasi mossa.

134

Supponiamo che inizi il Bianco e che si giunga allo stato qui
sotto raffigurato, con mossa al Nero: allora il Nero vince!

e Tuttavia, se nessuno
commette errori, la
partita non termina:

chiungue inizi, nessuno
dei due giocatori ha

modo di forzare il
blocco dell’'avversario!

135

Sono tantissimi i giochi con pedine su tavolieri...

Qualche esempio, dove | due giocatori collocano a turno le

proprie pedine, prima di muoverle, e lo scopo e fare un tris:

» Tapatan / Achi con 3 / 4 pedine a testa sul tavoliere a sin.
Ha una strategia vincente il primo giocatore.
Achi presenta interessanti varianti...

* Picaria con 3 pedine a testa sul tavoliere a destra
Nessuno dei due giocatori puo forzare la vittoria:

e un gioco infinito!

136

Giochi a due, determinati, a somma O: 1l tris

o =|o
O = | =
:-c||;:j|x

a=1o0

Ol = |0
O x| =
x| =0

c=—1

o| |o

o|lo|o ol |o
O =] = O = | =
® | | w | = |0
f=-1 h=
Ol =|o
O] = | =
x| x| O
g=-1

137

Alcuni giochi risolti (a favore della parita)

* Tris: 765 stati (modulo simmetrie) di cui 138 finali,
26830 partite (differenti sequenze di stati)

* Tela classica: circa 8 miliardi di stati (1995)

« Awari: circa 900 miliardi di stati (2002)
« Dama 8x8: circa 5- 1020 stati (2007)

Alcuni giochi che mai saranno risolti

e Scacchi: numero di stati stimato con 47 cifre decimali
« Shogi: numero di stati stimato con 71 cifre decimali

e G0 19%19: numero di stati stimato con 171 cifre decimali

138

Nord 1

AOOOBE
D@00 &

Awari

Stato del gioco dopo Sud 2:

Nord 1

@@@@@@
D0OOEE &

Risolto in senso forte: per ognuno degli stati (essenzialmente
diversi) e stata trovata la lista delle mosse “giuste” da fare! 139

Come realizzare un programma che giochi bene

« Minimizzare la massima perdita possibile (su un orizzonte)

* Ricordare le varianti principali!
140

Potatura alpha-beta (J. McCarthy, 1956)
()
MO (i) tgiow
4 (e, 5(e) giop 200, 9
(@)) @ O O O
~ - .

1 4

 Applicata agli scacchi da Newell, Simon e Shaw (CIT, 1958).

Awarl a profondita 8: risparmio di tempo > 50%
141

Miglioramenti

* Minimal Window Principal Variation Search:
T. A. Marsland e M. Campbell (1982-85)

* Nega-Scout: A. Reinefeld (1983-89)

Awarl a profondita 14: risparmio di tempo > 15% vs alpha-beta

e U’efficienza aumenta notevolmente se le mosse lecite sono
almeno una ventina e sono ordinate in una lista best-first.

* [terative deepening: ordinamento best-first a ciascun livello
di profondita, prima di passare al livello successivo.

 Transposition table: per evitare di analizzare piu volte uno
stesso stato del gioco.

142

Lt

L. Torres y Quevedo, El segundo ajedrecista, 1920 (Politecnico di Madrid, foto dell’autore)

Photomaton (J.-P. Delahaye e P. Mathieu, 1997)

E!i n

Se il formato dellimmagine € 2m x 2n pixel,

e p, = il piu piccolo intero tale che 2m — 1 divide 27p, — 1
e p, = il piu piccolo intero tale che 2n — 1 divide 27p, — 1
allora 'immagine iniziale riappare dopo mcm(p,, p,) passi.

144

» L'immagine del gatto € di formato 350 x 512 pixel.

« |l piu piccolo intero p, tale che 349 divide 2"p, — 1 € 348 = 22 * 3 * 29;
« il piu piccolo intero p, tale che 511 divide 2"p, —1 e 9 = 32,

* Dunque, I'immagine del gatto riapparira dopo 1044 passi...

dopo un passo... dopo due...

Tuttavia, alcuni passi intermedi danno curiosi risultati; ad esempio:
» dopo 488 passi I'effetto & quello di vedere 5 (!) x 4 gatti “ribaltati”...

WL

2
AR
A

s fu g

A

e |

A

A

A
A%

TN,
f T,
RSN
Qe ppapa e FLga vy

i

ARZAIIIAXAL,

1z

AT,

A

FAAAAAAAAAR
FAAAAAAAAD

o da g Ja J= fn fo fo o fo §o f o §a g pa g g g g e 3 e Be P e e
<1<}

<9927
T,
{737

5]

1
AAS AR

T,
A

395929092

A AARAAARAA XA AAAAXXAR

o e F Fe B B 5 gy

e
ARRALAAAARAA AL

AR AR AL LA

A-

e $o 4
= § = § §o §o e po o Fo e pe o)

P f= §-

OGO

ol

DIEEENE

Xt

AT AL LTI OO0

B e B B e W e 8 8 8 6 65 0 b 0 Y

AL L0000

AL

dopo 33 passi... dopo 34...

146

» dopo 522 passi (la meta di 1044: ma sara sempre cosi?) 'immagine
originale riappare perfettamente ribaltata lungo I'asse verticale;

* infine, dallimmagine del passo 1043, dove la testa del gatto s’intravede
ingrandita, si ritorna in un solo passo allimmagine nitida di partenza!

dopo 522 passi... dopo 1043... dopo 1044 147

Lorenzo G Aade

Un’introduzione n{L I T THHITEI
all’info{ T}

Edizioni Kangourou Italia

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44: Qual è il cammino più breve da Valle Chiara a Fonte Argento?
	Diapositiva 45: Algoritmo di Dijkstra (1959)
	Diapositiva 46: Algoritmo di Dijkstra primo passo
	Diapositiva 47: Algoritmo di Dijkstra secondo passo
	Diapositiva 48: Algoritmo di Dijkstra terzo passo
	Diapositiva 49: Algoritmo di Dijkstra quarto passo
	Diapositiva 50: Algoritmo di Dijkstra quinto passo
	Diapositiva 51: Algoritmo di Dijkstra sesto passo
	Diapositiva 52: Algoritmo di Dijkstra settimo passo
	Diapositiva 53: Algoritmo di Dijkstra: “complessità”
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60: Problemi (risolubili) “trattabili”
	Diapositiva 61: Problemi (risolubili) di fatto “intrattabili”
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64: Problema di ottimizzazione dello zaino
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71: Zaino ottimo con la programmazione dinamica
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85: Il problema del commesso viaggiatore (TSP)
	Diapositiva 86
	Diapositiva 87: TSP: un esempio con grafo completo, metrico (e simmetrico)
	Diapositiva 88: TSP: l’algoritmo più semplice (anche su grafi orientati)
	Diapositiva 89
	Diapositiva 90: Problema di minima copertura per nodi
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97: Un algoritmo per ottenere una soluzione ottima
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103: Puzzle semplici da programmare (con backtracking)
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127: Puzzle un po’ più complicati …
	Diapositiva 128: A prua e a poppa
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131: NIM (Charles L. Bouton, 1901)
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134: Un gioco infinito: Pong Hau K’i
	Diapositiva 135
	Diapositiva 136
	Diapositiva 137: Giochi a due, determinati, a somma 0: il tris
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140: Come realizzare un programma che giochi bene
	Diapositiva 141: Potatura alpha-beta (J. McCarthy, 1956)
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144: Photomaton (J.-P. Delahaye e P. Mathieu, 1997)
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148

